S6

Workshop 3. Exploring new endpoints in clinical trials

WS3.1 The effect of ivacaftor on the rate of lung function decline in CF patients with a *G551D-CFTR* mutation

G.S. Sawicki¹, <u>E. McKone²</u>, D.J. Pasta³, J. Wagener⁴, C. Johnson⁴, M.W. Konstan⁵. ¹Boston Children's Hospital, Boston, United States; ²St. Vincent's University Hospital, Dublin, Ireland; ³ICON Late Phase and Outcomes Research, San Francisco, United States; ⁴Vertex Pharmaceuticals Incorporated, Boston, United States; ⁵Case Western Reserve University School of Medicine Rainbow Babies and Children's Hospital, Cleveland, United States

Background and Objective: Progressive loss of lung function is a major cause of morbidity in CF patients; more rapid declines are associated with earlier mortality. Ivacaftor improves lung function in CF patients with a G551D mutation, but whether treatment affects FEV₁ rate of decline is unknown. Our goal is to examine whether ivacaftor therapy alters the rate of lung function decline in CF patients with a G551D mutation compared with CF patients who have F508del mutations.

Methods: A propensity score will be used to match CF patients with a *G551D* mutation who received ivacaftor in clinical trials for up to 144 weeks (n=192) in a 1:5 ratio with patients in the U.S. Cystic Fibrosis Foundation Patient Registry homozygous for the *F508del* mutation. Matching will be based on measures such as age, gender, % predicted FEV₁, and *P. aeruginosa* infection. Inclusion criteria for controls will be *F508del* homozygous genotype, age ≥ 6 years, sweat chloride $\geq 40 \text{ mmol/L}$, no evidence of lung transplant, and clinical stability based on care episode, medication, and spirometry data. The annual rate of change in % predicted FEV₁ by group will be assessed (mixed effects model).

Results: Preliminary results showed that the annualized rate of decline in % predicted FEV_1 in ivacaftor-treated patients is 0.60 percentage points (95% CI: -1.12, -0.08). The rate of decline in the *F508del* population will be available at the time of this presentation.

Conclusions: This analysis is expected to determine whether ivacaftor therapy alters the rate of decline in FEV₁ for CF patients with the G551D mutation.

WS3.2 The effect of ivacaftor treatment on lung ventilation defects, as measured by hyperpolarized helium-3 MRI, on patients with cystic fibrosis and a *G551D-CFTR* mutation

<u>T. Altes¹</u>, M. Johnson², M. Higgins², M. Fidler², M. Botfield², J.P. Mugler III¹, N. Tustison¹, D. Froh¹. ¹University of Virginia, Charlottesville, United States; ²Vertex Pharmaceuticals Incorporated, Boston, United States

Objectives: To evaluate the effect of short-term (4 weeks) and long-term (48 weeks) ivacaftor treatment on hyperpolarized helium-3 magnetic resonance imaging (³He-MRI)-defined ventilation defects in patients with cystic fibrosis (CF) and a G551D-CFTR mutation on at least 1 allele.

Methods: This was a single-center, 2-part, Phase 2 study of CF patients who had a *G551D-CFTR* mutation and % predicted FEV₁ \geq 40%. Part A was a single-blind, placebo-controlled study comprising 4 weeks of ivacaftor treatment and Part B was an open-label, 48-week study (washout between A and B \geq 4 weeks). Outcome measures were the mean change from baseline in total ventilation defect (TVD, the proportion of total ventilation defect volume to total lung volume) and total defect volume (TDV) at 4 weeks (Part A) and through 48 weeks (Part B), as measured by ³He-MRI.

Results: In Part A (n=8, mean age 18.9 years), ³He-MRI revealed that ivacaftor treatment reduced the TVD by a mean of 8.2 percentage points (P=0.0547) and the mean TDV by 0.48 L (P=0.0313). In Part B (n=9, mean age 24.4 years), through 48 weeks the mean decrease in TVD was 6.3 percentage points (P=0.1953) and the mean decrease in TVD was 0.31 L (P=0.2656). These results were associated with a 12.8-point increase (P=0.0078) in mean % predicted FEV₁ in Part A (4 weeks) and a 5.2-point increase in Part B (P=0.1953).

Conclusions: Total ventilation defect volume in patients with CF and the *G551D*-*CFTR* mutation was responsive to ivacaftor therapy. ³He-MRI may be useful for assessing ventilation defects that may not be captured using traditional spirometry, such as location of defects or disease burden.

endpoints in clinical trials Oral Presentations WS3.3 MRI-based pulmonary blood flow and lung function in

CF patients – flow changes with pulmonary decline

J.P. Clancy¹, R. Amin¹, R. Szczesniak¹, G. Mcphail¹, R. Fleck¹. ¹Cincinnati Children's Hospital Medical Center, Pediatrics, Cincinnati, United States

Objectives: In the current study, we examined relationships between pulmonary bloodflow (PBF) and FEV1 in CF patients with mild vs moderate and severe disease. **Methods:** 16 patients with CF were prospectively evaluated. 8 patients were included in the mild CF lung disease group (FEV1 >80% predicted, mean FEV1% = 103.6±10.4; mean age = 14.8±2 yrs, 6 males, 2 females) and 8 were included in the moderate-severe CF lung disease group (FEV1 <80% predicted, mean FEV1% = 56.6±11.6; mean age = 18.0±0.8 yrs, 3 males, 5 females). 17 non-CF, normal subjects served as controls (mean age = 18.6±6.9 yrs; 7 males, 10 females). Aorto-pulmonary collateral blood flow (APCBF) was calculated for each subject. The relationship between APCBF and FEV1% was modeled using nonparametric regression. Group differences were assessed by ANOVA.

Results: APCBF was similar to that of non-CF controls for CF patients with FEV1 >100%. APCBF increased as FEV1% in CF subjects fell below 101.5%, with high APCBF seen in moderate-severe lung disease compared to controls (0.89 vs. 0.20 L/min, (p < 0.0001). APCBF correlated negatively with FEV1% (R2=0.55, p=0.039).

Conclusion: APCBF was within the normal range in CF subjects with mild lung disease but rapidly increased as FEV1% dropped below 100%. A significant increase in the APCBF compared to controls was measured in patients with moderate-severe CF lung disease. APCBF may serve as a novel biomarker of early CF pulmonary disease.

WS3.4 Lack of correlation between sputum *Pseudomonas aeruginosa* density and FEV₁ changes among CF patients treated with inhaled antibiotics

<u>D.R. Vandevanter¹</u>, P.A. Flume², F. Cohen³, R. Fleming³, J.S. Elborn⁴. ¹Case Western Reserve University School of Medicine, Pediatrics, Cleveland, United States; ²Medical University of South Carolina, Charleston, United States; ³Aptalis, Bridgewater, United States; ⁴Queen's University, Belfast, United Kingdom

Objectives: We examined changes in sputum *Pseudomonas aeruginosa* (*Pa*) density $(\log_{10} CFU/g)$ and FEV₁% predicted among patients (pts) enrolled in a 24 wk randomized comparison of APT-1026 (levofloxacin nebuliser solution; LNS) and tobramycin nebuliser solution (TNS) to determine if there was a relationship between change in bacterial density and FEV₁ (NCT01270347).

Methods: Bivariate linear regressions for FEV₁% predicted change as a function of sputum *Pa* density change were performed at the ends of each of four 28-day study windows (wks 0–4, 4–8, 16–20, 20–24) in pts who had received no antibiotic (ABX) treatments other than one of the study drugs. Relationships between sputum *Pa* density change and FEV₁ change were analyzed using repeated measures models with effects/covariates for treatment, visit, baseline sputum *Pa* density, interaction terms, and relevant baseline characteristics.

Results: 207 pts (143 treated with LNS; 64 with TNS) had data for at least two consecutive visits (i.e. one window); 154 had ≥ 2 windows, 85 had ≥ 3 windows, and 68 had 4 windows. No significant correlations were observed between 28-day *Pa* sputum density change and FEV₁ change in any study window (P values range: 0.3–0.6; R²: 0.0015–0.0159) or by treatment group. Repeated measures results were consistent with bivariate regression.

Conclusion: Inhaled ABX presumably provide an FEV_1 benefit via antimicrobial activity. However, individual FEV_1 changes in pts receiving (or being withdrawn from) inhaled ABX for 28 days do not correlate linearly with changes in *Pa* density from expectorated sputum, suggesting that sputum *Pa* density changes inadequately reflect inhaled ABX activity in the CF airway.