151 research outputs found

    Applied Analysis and Synthesis of Complex Systems: Proceedings of the IIASA-Kyoto University Joint Seminar, June 28-29, 2004

    Get PDF
    This two-day seminar aimed at introducing the new development of the COE by Kyoto University to IIASA and discussing general modeling methodologies for complex systems consisting of many elements, mostly via nonlinear, large-scale interactions. We aimed at clarifying fundamental principles in complex phenomena as well as utilizing and synthesizing the knowledge derived out of them. The 21st Century COE (Center of Excellence) Program is an initiative by the Japanese Ministry of Education, Culture, Science and Technology (MEXT) to support universities establishing discipline-specific international centers for education and research, and to enhance the universities to be the world's apex of excellence with international competitiveness in the specific research areas. Our program of "Research and Education on Complex Functional Mechanical Systems" is successfully selected to be awarded the fund for carrying out new research and education as Centers of Excellence in the field of mechanical engineering in 2003 (five-year project), and is expected to lead Japanese research and education, and endeavor to be the top in the world. The program covers general backgrounds in diverse fields as well as a more in-depth grasp of specific branches such as complex system modeling and analysis of the problems including: nonlinear dynamics, micro-mesoscopic physics, turbulent transport phenomena, atmosphere-ocean systems, robots, human-system interactions, and behaviors of nano-composites and biomaterials. Fundamentals of those complex functional mechanical systems are macroscopic phenomena of complex systems consisting of microscopic elements, mostly via nonlinear, large-scale interactions, which typically present collective behavior such as self-organization, pattern formation, etc. Such phenomena can be observed or created in every aspect of modern technologies. Especially, we are focusing upon; turbulent transport phenomena in climate modeling, dynamical and chaotic behaviors in control systems and human-machine systems, and behaviors of mechanical materials with complex structures. As a partial attainment of this program, IIASA and Kyoto University have exchanged Consortia Agreement at the beginning of the program in 2003, and this seminar was held to introduce the outline of the COE program of Kyoto University to IIASA researchers and to deepen the shared understandings on novel complex system modeling and analysis, including novel climate modeling and carbonic cycle management, through joint academic activities by mechanical engineers and system engineers. In this seminar, we invited a distinguished researcher in Europe as a keynote speaker and our works attained so far in the project were be presented by the core members of the project as well as by the other contributing members who participated in the project. All IIASA research staff and participants of YSSP (Young Scientist Summer Program) were cordially invited to attend this seminar to discuss general modeling methodologies for complex systems

    Wave Directional Spreading From Point Field Measurements

    Get PDF
    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems
    corecore