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Abstract
In this paper, we first generalize the first order exponential Hanson-Antczak type
(α,β ,γ ,ξ ,ρ ,η,θ )-invexities to the case of the HA(α,β ,γ ,ξ ,ρ ,η,h(·, ·),θ )-V-invexities,
which encompass most of the exponential type invexities as well as other various
invexity variants in the literature. The obtained results are new and general in nature
relevant to various applications arising in semiinfinite multiobjective fractional
programming and optimization.
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1 Introduction
Zalmai [] introduced some multiparameter generalizations of the class of V-r-invex
functions defined by Antczak [], and then, using the new functions, proved a num-
ber of parametric sufficient efficiency results under various Hanson-Antczak types gen-
eralized (α,β ,γ , ξ ,ρ, θ )-V-invexity assumptions for the semiinfinite multiobjective frac-
tional programming problems. Recently, Verma [, ] has investigated some results on
the multiobjective fractional programming based on new ε-optimality conditions, and
second-order (
,η,ρ, θ )-invexities for parameter-free ε-efficiency conditions. On the
other hand, Verma [] established a class of results for multiobjective fractional sub-
set programming problems as well. Now we consider the following semiinfinite mul-
tiobjective fractional programming problem based on the first order exponential type
HA(α,β ,γ , ξ ,ρ,η, h(·, ·), θ )-V-invexity:

(P) Minimizeϕ(x) =
(
ϕ(x), . . . ,ϕp(x)

)
=

(
f(x)
g(x)

, . . . ,
fp(x)
gp(x)

)

subject to

Gj(x, t) � , for all t ∈ Tj, j ∈ q,
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Hk(x, s) = , for all s ∈ Sk , k ∈ r,

x ∈ X,

where p, q, and r are positive integers, X is a nonempty open convex subset of Rn (n-
dimensional Euclidean space), for each j ∈ q ≡ {, , . . . , q} and k ∈ r, Tj and Sk are compact
subsets of complete metric spaces, for each i ∈ p, fi and gi are real-valued functions defined
on X, for each j ∈ q, Gj(·, t) is a real-valued function defined on X, for all t ∈ Tj, for each
k ∈ r, Hk(·, s) is a real-valued function defined on X, for all s ∈ Sk , for each j ∈ q and k ∈ r,
Gj(x, ·) and Hk(x, ·) are continuous real-valued functions defined, respectively, on Tj and
Sk , for all x ∈ X, and for each i ∈ p, gi(x) >  for all x satisfying the constraints of (P).

Multiobjective programming problems of the form (P) but with a finite number of con-
straints (where the functions Gj are independent of t, and the functions Hk are indepen-
dent of s), have been investigated for the past three decades. Several classes of static and
dynamic optimization problems with multiple fractional objective functions have been
studied leading to a number of sufficient efficiency and duality results currently available
in the related literature. We observe that despite phenomenal research advances in several
areas of multiobjective programming, the semiinfinite nonlinear multiobjective fractional
programming problems have not received much attention in the general area of mathe-
matical programming.

In this communication, we first present a generalization - the first order exponential type
HA(α,β ,γ , ξ ,ρ,η, h(·, ·), θ )-V-invexities, and then formulate a number of parametric suffi-
cient efficiency results for problem (P) under various generalized (α,β ,γ , ξ ,ρ,η, h(·, ·), θ )-
invexity assumptions. A mathematical programming problem is generally categorized as
the semiinfinite programming problem if it has a finite number of variables and infinitely
many constraints, while problems of this type have been applied for the modeling and anal-
ysis of a wide range of theoretical as well as concrete, real-world problems. Furthermore,
semiinfinite programming concepts and techniques have challenging applications in ap-
proximation theory, statistics, game theory, engineering design, boundary value problems,
defect minimization for operator equations, geometry, random graphs, wavelet analysis,
reliability testing, environmental protection planning, decision making under uncertainty,
semidefinite programming, geometric programming, disjunctive programming, optimal
control problems, robotics, and continuum mechanics. For more details, we refer the
reader to [–].

This communication begins with an introductory section, while in Section , we intro-
duce the first order exponential type HA(α,β ,γ , ξ ,ρ,η, h(·, ·), θ )-V-invexities along with
some auxiliary results which will be needed in the sequel. In Section , we discuss some
sufficient efficiency conditions where we formulate and prove several sets of sufficiency
criteria under a variety of the first order exponential type HA(α,β ,γ , ξ ,ρ,η, h(·, ·), θ )-V-
invexities that are placed on certain vector-valued functions whose entries consist of the
individual as well as some combinations of the problem functions. Finally, Section  deals
with several families of sufficient efficiency results under various first order exponential
type HA(α,β ,γ , ξ ,η, h(·, ·),ρ, θ )-V-invexity hypotheses imposed on certain vector func-
tions whose components are formed by considering different combinations of the problem
functions, which is accomplished by applying a certain type of partitioning scheme.

As a matter of fact, all the parametric sufficient efficiency results established in this paper
regarding problem (P) can easily be modified and restated for each one of the following
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seven special classes of nonlinear programming problems.

(P) Minimize
x∈F

(
f(x), . . . , fp(x)

)
;

(P) Minimize
x∈F

f(x)
g(x)

;

(P) Minimize
x∈F

f(x),

where F (assumed to be nonempty) is the feasible set of (P), that is,

F =
{

x ∈ X : Gj(x, t) � , for all t ∈ Tj, j ∈ q, Hk(x, s) = , for all s ∈ Sk , k ∈ r
}

;

(P) Minimize

(
f(x)
g(x)

, . . . ,
fp(x)
gp(x)

)

subject to

G̃j(x) � , j ∈ q, H̃k(x) = , k ∈ r, x ∈ X,

where fi and gi, i ∈ p, are as defined in the description of (P), G̃j, j ∈ q, and H̃k , k ∈ r, are
real-valued functions defined on X;

(P) Minimize
x∈G

(
f(x), . . . , fp(x)

)
;

(P) Minimize
x∈G

f(x)
g(x)

;

(P) Minimize
x∈G

f(x),

where G is the feasible set of (P), that is,

G =
{

x ∈ X : G̃j(x) � , j ∈ q, H̃k(x) = , k ∈ r
}

.

2 Preliminaries
In this section we first introduce the notion of the first order exponential type HA(α,β ,γ ,
ξ ,ρ,η, h(·, ·), θ )-V-invexities, and then recall some other related auxiliary results instru-
mental to the problem at hand.

Definition . Let f be a differentiable real-valued function defined on R
n. Then f is said

to be η-invex (invex with respect to η) at y if there exists a function η : Rn ×R
n →R

n such
that for each x ∈R

n,

f (x) – f (y) �
〈∇f (y),η(x, y)

〉
,

where ∇f (y) = (∂f (y)/∂y, ∂f (y)/∂y, . . . , ∂f (y)/∂yn) is the gradient of f at y, and 〈a, b〉 de-
notes the inner product of the vectors a and b; f is said to be η-invex on R

n if the above
inequality holds for all x, y ∈ R

n.
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Hanson [] showed (based on the role of the function η) that for a nonlinear program-
ming problem of the form

Minimize f (x) subject to gi(x) � , i ∈ m, x ∈R
n,

where the differentiable functions f , gi : Rn →R, i ∈ m, are invex with respect to the func-
tion η : Rn ×R

n →R
n, the Karush-Kuhn-Tucker necessary optimality conditions are also

sufficient.
Let the function F = (F, F, . . . , FN ) : Rn → R

N be differentiable at x∗. The following
generalizations of the notions of invexity, pseudoinvexity, and quasiinvexity for vector-
valued functions were originally proposed in [].

Definition . The function F is said to be (α,η)-V-invex at x∗ if there exist functions
αi : Rn × R

n → R+\{} ≡ (,∞), i ∈ N , and η : Rn × R
n → R

n such that for each x ∈ R
n

and i ∈ N ,

Fi(x) – Fi
(
x∗)�

〈
αi

(
x, x∗)∇Fi

(
x∗),η

(
x, x∗)〉.

Definition . The function F is said to be (β ,η)-V-pseudoinvex at x∗ if there exist func-
tions βi : Rn ×R

n →R+\{}, i ∈ N , and η : Rn ×R
n →R

n such that for each x ∈R
n,

〈 N∑

i=

∇Fi
(
x∗),η

(
x, x∗)

〉

�  ⇒
N∑

i=

βi
(
x, x∗)Fi(x) �

N∑

i=

βi
(
x, x∗)Fi

(
x∗).

Definition . The function F is said to be (γ ,η)-V-quasiinvex at x∗ if there exist func-
tions γi : Rn ×R

n →R+\{}, i ∈ N , and η : Rn ×R
n →R

n such that for each x ∈R
n,

N∑

i=

γi
(
x, x∗)Fi(x) �

N∑

i=

γi
(
x, x∗)Fi

(
x∗) ⇒

〈 N∑

i=

∇Fi
(
x∗),η

(
x, x∗)

〉

� .

Recently, Antczak [] introduced the following variant of the class of V-invex functions.

Definition . A differentiable function f : X → R
k is called (strictly) ζi-r̃-invex with re-

spect to η at u ∈ X if there exist functions η : X × X →R
n and ζi : X × X →R+\{}, i ∈ k,

such for each x ∈ X,


r̃

er̃fi(x)(>) � 
r̃

er̃fi(u)[ + r̃ζi(x, u)
〈∇fi(u),η(x, u)

〉]
for r̃ �= ,

fi(x) – fi(u) � ζi(x, u)
〈∇fi(u),η(x, u)

〉
for r̃ = .

This class of functions was considered in [] for establishing some sufficiency and
duality results for a nonlinear programming problem with differentiable functions, and
their nonsmooth analogues were discussed in []. Recently, Zalmai [] introduced the
Hanson-Antczak type generalized HA(α,β ,γ , ξ ,η,ρ, θ )-V-invexity, an exponential type
framework, and then he applied to a set of problems on fractional programming. As a re-
sult, he further envisioned a vast array of interesting and significant classes of generalized
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convex functions. Now we present first order exponential type HA(α,β ,γ , ξ ,η, h(·, ·),ρ, θ )-
V-invexities that generalize and encompass most of the existing notions available in the
current literature. Let the function F = (F, F, . . . , Fp) : X →R

p be differentiable at x∗.

Definition . The function F is said to be (strictly) HA(α,β ,γ , h(·, ·), ξ ,η,ρ, θ )-invex at
x∗ ∈ X if there exist functions α : X ×X →R, β : X ×X → R, γi : X ×X →R+, ξi : X ×X →
R+\{}, i ∈ p, z ∈R

n, η : X ×X →R
n, ρi : X ×X →R, i ∈ p, and θ : X ×X →R

n such that,
for all x ∈ X (x �= x∗) and i ∈ p,


α(x, x∗)

γi
(
x, x∗)(eα(x,x∗)[Fi(x)–Fi(x∗)] – 

)

(>) � 
β(x, x∗)

〈
ξi

(
x, x∗)∇zhi

(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρi
(
x, x∗)∥∥θ

(
x, x∗)∥∥ if α

(
x, x∗) �=  and β

(
x, x∗) �= , for all x ∈ X,


α(x, x∗)

γi
(
x, x∗)(eα(x,x∗)[Fi(x)–Fi(x∗)] – 

)

(>) �
〈
ξi

(
x, x∗)∇zhi

(
x∗, z

)
,η

(
x, x∗)〉

+ ρi
(
x, x∗)∥∥θ

(
x, x∗)∥∥ if α

(
x, x∗) �=  and β

(
x, x∗) → , for all x ∈ X,

γi
(
x, x∗)[Fi(x) – Fi

(
x∗)]

(>) � 
β(x, x∗)

〈
ξi

(
x, x∗)∇zhi

(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρi
(
x, x∗)∥∥θ

(
x, x∗)∥∥ if α

(
x, x∗) →  and β

(
x, x∗) �= , for all x ∈ X,

γi
(
x, x∗)[Fi(x) – Fi

(
x∗)]

(>) �
〈
ξi

(
x, x∗)∇zhi

(
x∗, z

)
,η

(
x, x∗)〉 + ρi

(
x, x∗)∥∥θ

(
x, x∗)∥∥

if α
(
x, x∗) →  and β

(
x, x∗) → , for all x ∈ X,

where ‖ · ‖ is a norm on R
n and

(
eβ(x,x∗)η(x,x∗) – 

) ≡ (
eβ(x,x∗)η(x,x∗) – , . . . , eβ(x,x∗)ηn(x,x∗) – 

)
,

with h : Rn ×R
n → R

n differentiable.

Definition . The function F is said to be (strictly) HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-
pseudoinvex at x∗ ∈ X if there exist functions α : X × X →R, β : X × X →R, γ : X × X →
R+, ξi : X ×X →R+\{}, i ∈ p, z ∈R

n, η : X ×X →R
n, ρ : X ×X →R, and θ : X ×X →R

n

such that, for all x ∈ X (x �= x∗),


β(x, x∗)

〈 p∑

i=

∇zhi
(
x∗, z

)
, eβ(x,x∗)η(x,x∗)) – 

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

⇒ 
α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Fi(x)–Fi(x∗)] – 

)
(>) � 

if α
(
x, x∗) �=  and β

(
x, x∗) �= , for all x ∈ X,
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〈 p∑

i=

∇zhi
(
x∗, z

)
,η

(
x, x∗)

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

⇒ 
α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Fi(x)–Fi(x∗)] – 

)
(>) � 

if α
(
x, x∗) �=  and β

(
x, x∗) → , for all x ∈ X,


β(x, x∗)

〈 p∑

i=

∇zhi
(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

⇒ γ
(
x, x∗)

p∑

i=

ξi
(
x, x∗)[Fi(x) – Fi

(
x∗)](>) � 

if α
(
x, x∗) →  and β

(
x, x∗) �= , for all x ∈ X,

〈 p∑

i=

∇zhi
(
x∗, z

)
,η

(
x, x∗)

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

⇒ γ
(
x, x∗)

p∑

i=

ξi
(
x, x∗)[Fi(x) – Fi

(
x∗)](>) � 

if α
(
x, x∗) →  and β

(
x, x∗) → , for all x ∈ X.

The function F is said to be (strictly) HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-pseudoinvex on X if
it is (strictly) HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-pseudoinvex at each point x∗ ∈ X.

Definition . The function F is said to be (prestrictly) (α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-quasi-
invex at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γ : X × X → R+,
ξi : X × X →R+\{}, i ∈ p, η : X × X →R

n, ρ : X × X →R, and θ : X × X →R
n such that,

for all x ∈ X,


α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Fi(x)–Fi(x∗)] – 

)
(<) � 

⇒ 
β(x, x∗)

〈 p∑

i=

∇zhi
(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

if α
(
x, x∗) �=  and β

(
x, x∗) �= , for all x ∈ X,


α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Fi(x)–Fi(x∗)] – 

)
(<) � 

⇒
〈 p∑

i=

∇zhi
(
x∗, z

)
,η

(
x, x∗)

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

if α
(
x, x∗) �=  and β

(
x, x∗) → , for all x ∈ X,

γ
(
x, x∗)

p∑

i=

ξi
(
x, x∗)[Fi(x) – Fi

(
x∗)](<) � 

⇒ 
β(x, x∗)

〈 p∑

i=

∇zhi
(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

if α
(
x, x∗) →  and β

(
x, x∗) �= , for all x ∈ X,
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γ
(
x, x∗)

p∑

i=

ξi
(
x, x∗)[Fi(x) – Fi

(
x∗)](<) � 

⇒
〈 p∑

i=

∇zhi
(
x∗, z

)
,η

(
x, x∗)

〉

� –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

if α
(
x, x∗) →  and β

(
x, x∗) → , for all x ∈ X.

We also noticed that, for the proofs of the sufficient efficiency theorems, sometimes it
may be more appropriate to apply certain alternative but equivalent forms of the above def-
initions based on considering the contrapositive statements. For example, the exponential
type HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-quasiinvexity (when α(x, x∗) �=  and β(x, x∗) �= , for all
x ∈ X) can be defined in the following equivalent way:

The function F is an exponential type HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-quasiinvex at x∗ ∈ X
if there exist functions α : X × X → R, β : X × X → R, γ : X × X → R+, ξi : X × X →
R+\{}, i ∈ p, η : X × X →R

n, ρ : X × X →R, and θ : X × X →R
n such that, for all x ∈ X,


β(x, x∗)

〈 p∑

i=

∇zhi
(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

> –ρ
(
x, x∗)∥∥θ

(
x, x∗)∥∥

⇒ 
α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Fi(x)–Fi(x∗)] – 

)
> ,

where h : Rn ×R
n →R

n is differentiable.

Example . In this example, we note that the exponential type invexity notion does not
reduce to Definition .. Furthermore to the best our knowledge, there is no such gen-
eral notion is available in the current literature. The function F is said to be (strictly)
HA(α,β ,γ , ξ ,η, ζ ,ρ, θ )-invex at x∗ ∈ X if there exist functions α : X ×X → R, β : X ×X →
R, γi : X × X →R+, ξi : X × X →R+\{}, i ∈ p, z ∈ R

n, η, ζ : X × X →R
n, ρi : X × X →R,

i ∈ p, and θ : X × X →R
n such that, for all x ∈ X (x �= x∗) and i ∈ p,


α(x, x∗)

γi
(
x, x∗)(eα(x,x∗)[Fi(x)–Fi(x∗)+〈∇zhi(x∗ ,z),eζ (x,x∗)〉] – 

)

(>) � 
β(x, x∗)

〈
ξi

(
x, x∗)∇zhi

(
x∗, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρi
(
x, x∗)∥∥θ

(
x, x∗)∥∥ if α

(
x, x∗) �=  and β

(
x, x∗) �= , for all x ∈ X.

In the sequel, we shall also need a consistent notation for vector inequalities. For a, b ∈
R

m, the following order notation will be used: a � b if and only if ai � bi, for all i ∈ m;
a ≥ b if and only if ai � bi, for all i ∈ m, but a �= b; a > b if and only if ai > bi, for all i ∈ m;
and a � b is the negation of a ≥ b.

Consider the multiobjective problem

(
P∗) Minimize

x∈F
F(x) =

(
F(x), . . . , Fp(x)

)
,

where Fi, i ∈ p, are real-valued functions defined on R
n.

An element x◦ ∈ F is said to be an efficient (Pareto optimal, nondominated, noninferior)
solution of (P∗) if there exists no x ∈ F such that F(x) ≤ F(x◦). In the area of multiobjective
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programming, there exist several versions of the notion of efficiency most of which are
discussed in [, , , ]. However, throughout this paper, we shall deal exclusively with
the efficient solutions of (P) in the sense defined above.

For the purpose of comparison with the sufficient efficiency conditions that will be pro-
posed and discussed in this paper, we next recall a set of necessary efficiency conditions
for (P).

Theorem . ([]) Let x∗ ∈ F, let λ∗ = ϕ(x∗), for each i ∈ p, let fi and gi be continuously
differentiable at x∗, for each j ∈ q, let the function Gj(·, t) be continuously differentiable at
x∗, for all t ∈ Tj, and for each k ∈ r, let the function Hk(·, s) be continuously differentiable
at x∗, for all s ∈ Sk . If x∗ is an efficient solution of (P), if the generalized Guignard constraint
qualification holds at x∗, and if for each i ∈ p, the set cone({∇Gj(x∗, t) : t ∈ T̂j(x∗), j ∈ q} ∪
{∇fi(x∗) – λ∗

i ∇gi(x∗) : i ∈ p, i �= i}) + span({∇Hk(x∗, s) : s ∈ Sk , k ∈ r}) is closed, then there
exist u∗ ∈ U and integers ν∗

 and ν∗, with  � ν∗
 � ν∗ � n + , such that there exist ν∗


indices jm, with  � jm � q, together with ν∗

 points tm ∈ T̂jm (x∗), m ∈ ν∗
 , ν∗ – ν∗

 indices km,
with  � km � r, together with ν∗ – ν∗

 points sm ∈ Skm for m ∈ ν∗\ν∗
 , and ν∗ real numbers

v∗
m, with v∗

m >  for m ∈ ν∗
 , with the property that

p∑

i=

u∗
i
[∇fi

(
x∗) – λ∗

i ∇gi
(
x∗)] +

ν∗
∑

m=

v∗
m∇Gjm

(
x∗, tm)

+
ν∗∑

m=ν∗
 +

v∗
m∇Hkm

(
x∗, sm)

= ,

where cone(V ) is the conic hull of the set V ⊂ R
n (i.e., the smallest convex cone contain-

ing V ), span(V ) is the linear hull of V (i.e., the smallest subspace containing V ), T̂j(x∗) =
{t ∈ Tj : Gj(x∗, t) = }, U = {u ∈ R

p : u > ,
∑p

i= ui = }, and ν∗\ν∗
 is the complement of the

set ν∗
 relative to the set ν∗.

3 Sufficient efficiency conditions
In this section, we present several sets of sufficiency results in which various generalized
exponential type HA(α,β ,γ , ξ ,η,ρ, h(·, ·), θ )-V-invexity assumptions are imposed on cer-
tain vector functions whose components are the individual as well as some combinations
of the problem functions.

Let the function Ei(·,λ, u) : X →R be defined, for fixed λ and u, on X by

Ei(z,λ, u) = ui
[
fi(z) – λigi(z)

]
, i ∈ p.

Theorem . Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and Hk(·, s) be
differentiable at x∗, for all t ∈ Tj and s ∈ Sk , j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U
and integers ν and ν , with  � ν � ν � n + , such that there exist ν indices jm, with
 � jm � q, together with ν points tm ∈ T̂jm (x∗), m ∈ ν, ν – ν indices km, with  � km � r,
together with ν – ν points sm ∈ Skm , m ∈ ν\ν, and ν real numbers v∗

m, with v∗
m >  for

m ∈ ν, with the property that

p∑

i=

u∗
i
[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
+

ν∑

m=

v∗
m∇zωjm

(
x∗, tm, z

)

+
ν∑

m=ν+

v∗
m∇z�km

(
x∗, sm, z

)
= . (.)
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Assume, furthermore, that either one of the following two sets of conditions holds:
(a) (i) fi is exponential type HA(α,β , γ̄ , ξ ,η, ρ̄, h(·, ·), θ )-V-invex at x∗, gi is exponential

type HA(α,β , γ̄ , ξ ,η, ρ̄,κ(·, ·), θ )-V-invex at x∗, and γ̄ (x, x∗) > , for all x ∈ F;
(ii) (v∗

 Gj (·, t), . . . , v∗
ν Gjν

(·, tν )) is exponential type
HA(α,β , γ̂ ,π ,η, ρ̂,ω(·, ·), θ )-V-invex at x∗;

(iii) (v∗
ν+Hkν+ (·, sν+), . . . , v∗

νHkν (·, sν)) is exponential type
HA(α,β , γ̆ , δ,η, ρ̆,� (·, ·), θ )-V-invex at x∗;

(iv) ξi = πk = δl = σ , for all i ∈ p, k ∈ ν, and l ∈ ν\ν;
(v)

∑p
i= u∗

i ρ̄i(x, x∗) +
∑ν

m= ρ̂m(x, x∗) +
∑ν

m=ν+ ρ̆m(x, x∗) � , for all x ∈ F;
(b) the function (L(·, u∗, v∗,λ∗, t̄, s̄), . . . , Lp(·, u∗, v∗,λ∗, t̄, s̄)) is exponential type

HA(α,β ,γ , ξ , , h(·, ·),κ(·, ·),ω(·, ·),� (·, ·), θ )-V-pseudoinvex at x∗ and γ (x, x∗) > ,
for all x ∈ F, where

Li
(
z, u∗, v∗,λ∗, t̄, s̄

)

= u∗
i

[

fi(z) – λ∗
i gi(z) +

ν∑

m=

v∗
mGjm

(
z, tm)

+
ν∑

m=ν+

v∗
mHkm

(
z, sm)

]

, i ∈ p.

Then x∗ is an efficient solution of (P).

Proof (a): In view of our assumptions in (i)-(iv), we have


α(x, x∗)

γ̄i
(
x, x∗)(eα(x,x∗){fi(x)–λ∗

i gi(x)–[fi(x∗)–λ∗
i gi(x∗)]} – 

)

� 
β(x, x∗)

〈
σ
(
x, x∗)[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρ̄i
(
x, x∗)∥∥θ

(
x, x∗)∥∥, i ∈ p, (.)


α(x, x∗)

γ̂m
(
x, x∗)(eα(x,x∗)[v∗

mGjm (x,tm)–v∗
mGjm (x∗ ,tm)] – 

)

� 
β(x, x∗)

〈
σ
(
x, x∗)v∗

m∇zωjm
(
x∗, tm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρ̂m
(
x, x∗)∥∥θ

(
x, x∗)∥∥, m ∈ ν, (.)


α(x, x∗)

γ̆m
(
x, x∗)(eα(x,x∗)[v∗

mHkm (x,sm)–v∗
mHkm (x∗ ,sm)] – 

)

� 
β(x, x∗)

〈
σ
(
x, x∗)v∗

m∇z�km

(
x∗, sm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+ ρ̆m
(
x, x∗)∥∥θ

(
x, x∗)∥∥, m ∈ ν\ν. (.)

Multiplying (.) by u∗
i and then summing over i ∈ p, summing (.) over m ∈ ν, and

summing (.) over m ∈ ν\ν, and finally adding the resulting inequalities, we get


α(x, x∗)

{ p∑

i=

u∗
i γ̄i

(
x, x∗)(eα(x,x∗){fi(x)–λ∗

i gi(x)–[fi(x∗)–λ∗
i gi(x∗)]} – 

)

+
ν∑

m=

γ̂m
(
x, x∗)(eα(x,x∗)[v∗

mGjm (x,tm)–v∗
mGjm (x∗ ,tm)] – 

)
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+
ν∑

m=ν+

γ̆m
(
x, x∗)(eα(x,x∗)[v∗

mHkm (x,sm)–v∗
mHkm (x∗ ,sm)] – 

)
}

� 
β(x, x∗)

σ
(
x, x∗)

〈 p∑

i=

u∗
i
[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
+

ν∑

m=

v∗
m∇zωjm

(
x∗, tm, z

)

+
ν∑

m=ν+

v∗
m∇z�km

(
x∗, sm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

+

[ p∑

i=

u∗
i ρ̄i

(
x, x∗) +

ν∑

m=

ρ̂m
(
x, x∗) +

ν∑

m=ν+

ρ̆m
(
x, x∗)

]
∥∥θ

(
x, x∗)∥∥.

Now using (.) and (v), and noticing that σ (x, x∗) > , ϕ(x∗) = λ∗; x, x∗ ∈ F, and Gjm (x∗,
tm) = , for all m ∈ ν, the above inequality reduces to


α(x, x∗)

p∑

i=

u∗
i γ̄i

(
x, x∗)(eα(x,x∗)[fi(x)–λ∗

i gi(x)] – 
)
� .

Since γ̄ (x, x∗) > , even if we consider the both cases α(x, x∗) >  and α(x, x∗) < , it follows
from the above inequality

p∑

i=

u∗
i
[
fi(x) – λ∗

i gi(x)
]
� . (.)

Therefore, we conclude that x∗ is an efficient solution of (P).
(b): Let x be an arbitrary feasible solution of (P). From (.) we observe


β(x, x∗)

〈 p∑

i=

u∗
i
[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
+

ν∑

m=

v∗
m∇zωjm

(
x∗, tm, z

)

+
ν∑

m=ν+

v∗
m∇z�km

(
x∗, sm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

= , (.)

which in view of our (α,β ,γ , ξ , , h(·, ·),κ(·, ·),ω(·, ·),� (·, ·), θ )-pseudoinvexity assumption
implies that


α(x, x∗)

γ
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[Li(x,u∗ ,v∗ ,λ∗ ,t̄,s̄)–Li(x∗ ,u∗ ,v∗ ,λ∗ ,t̄,s̄)] – 

)
� .

We need to examine the two cases: α(x, x∗) >  and α(x, x∗) < . If we assume that α(x, x∗) >
 and recall that γ (x, x∗) > , then the above inequality becomes

eα(x,x∗)
∑p

i= ξi(x,x∗)[Li(x,u∗ ,v∗ ,λ∗ ,t̄,s̄)–Li(x∗ ,u∗ ,v∗ ,λ∗ ,t̄,s̄)] � ,

which implies that

p∑

i=

ξi
(
x, x∗)Li

(
x, u∗, v∗,λ∗, t̄, s̄

)
�

p∑

i=

ξi
(
x, x∗)Li

(
x∗, u∗, v∗,λ∗, t̄, s̄

)
.
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Because x∗ ∈ F, tm ∈ T̂jm (x∗), m ∈ ν, and λ∗
i = ϕi(x∗), i ∈ p, the right-hand side of the above

inequality is equal to zero, and hence we have L(x, u∗, v∗,λ∗, t̄, s̄) � . Next, as x ∈ F, and
v∗

m > , m ∈ ν, this inequality simplifies to

p∑

i=

u∗
i ξi

(
x, x∗)[fi(x) – λ∗

i gi(x)
]
� . (.)

Since u∗ >  and ξi(x, x∗) > , i ∈ p, the above inequality implies that

(
f(x) – λ∗

 g(x), . . . , fp(x) – λ∗
pgp(x)

)
� (, . . . , ),

which in turn implies that

(
f(x)
g(x)

, . . . ,
fp(x)
gp(x)

)
�

(
λ∗

 , . . . ,λ∗
p
)

= ϕ
(
x∗).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an efficient solution
of (P). On the other hand, we arrive at the same conclusion if we assume that α(x, x∗) < .

�

Remark We observe that the proof for solutions of Theorem . can be achieved using
the method of contradictions as well.

Theorem . Let x∗ ∈ F, λ∗ = ϕ(x∗), the functions fi, gi, i ∈ p, Gj(·, t), and Hk(·, s) be dif-
ferentiable at x∗, for all t ∈ Tj and s ∈ Sk , j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U
and integers ν and ν , with  � ν � ν � n + , such that there exist ν indices jm, with
 � jm � q, together with ν points tm ∈ T̂jm (x∗), m ∈ ν, ν – ν indices km, with  � km � r,
together with ν – ν points sm ∈ Skm , m ∈ ν\ν, and ν real numbers v∗

m, with v∗
m >  for

m ∈ ν, such that (.) holds.
In addition, assume that any one of the following four sets of hypotheses is satisfied:
(a) (i) (E(·,λ∗, u∗), . . . ,Ep(·,λ∗, u∗)) is exponential type

HA(α,β , γ̄ , ξ , h(·, ·),κ(·, ·), ρ̄,η, θ )-V-pseudoinvex at x∗ and γ̄ (x, x∗) > , for all
x ∈ F;

(ii) (v∗
 Gj (·, t), . . . , v∗

ν Gjν
(·, tν )) is exponential type

HA(α,β , γ̂ ,π ,ω(·, ·), ρ̂,η, θ )-V-quasiinvex at x∗;
(iii) (v∗

ν+Hkν+ (·, sν+), . . . , v∗
νHkν (·, sν)) is exponential type

HA(α,β , γ̆ , δ,� (·, ·), ρ̆,η, θ )-V-quasiinvex at x∗;
(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) � , for all x ∈ F;

(b) (i) (E(·,λ∗, u∗), . . . ,Ep(·,λ∗, u∗)) is exponential type prestrictly
HA(α,β , γ̄ , ξ , h(·, ·),κ(·, ·), ρ̄,η, θ )-quasiinvex at x∗ and γ̄ (x, x∗) > , for all x ∈ F;

(ii) (v∗
 Gj (·, t), . . . , v∗

ν Gjν
(·, tν )) is exponential type

HA(α,β , γ̂ ,π ,ω(·, ·), ρ̂,η, θ )-V-quasiinvex at x∗;
(iii) (v∗

ν+Hkν+ (·, sν+), . . . , v∗
νHkν (·, sν)) is exponential type

HA(α,β , γ̆ , δ,� (·, ·), ρ̆,η, θ )-V-quasiinvex at x∗;
(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) > , for all x ∈ F;

(c) (i) (E(·,λ∗, u∗), . . . ,Ep(·,λ∗, u∗)) is prestrictly exponential type
HA(α,β , γ̄ , ξ , h(·, ·),κ(·, ·), ρ̄,η, θ )-V-quasiinvex at x∗ and γ̄ (x, x∗) > , for all
x ∈ F;
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(ii) (v∗
 Gj (·, t), . . . , v∗

ν Gjν
(·, tν )) is strictly exponential type

HA(α,β , γ̂ ,π ,ω(·, ·), ρ̂,η, θ )-V-pseudoinvex at x∗;
(iii) (v∗

ν+Hkν+ (·, sν+), . . . , v∗
νHkν (·, sν)) is exponential type

HA(α,β , γ̆ , δ,� (·, ·), ρ̆,η, θ )-V-quasiinvex at x∗;
(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) � , for all x ∈ F;

(d) (i) (E(·,λ∗, u∗), . . . ,Ep(·,λ∗, u∗)) is prestrictly exponential type
HA(α,β , γ̄ , ξ , h(·, ·),κ(·, ·), ρ̄,η, θ )-V-quasiinvex at x∗ and γ̄ (x, x∗) > , for all
x ∈ F;

(ii) (v∗
 Gj (·, t), . . . , v∗

ν Gjν
(·, tν )) is exponential type

HA(α,β , γ̂ ,π ,ω(·, ·), ρ̂,η, θ )-V-quasiinvex at x∗;
(iii) (v∗

ν+Hkν+ (·, sν+), . . . , v∗
νHkν (·, sν)) is strictly exponential type

HA(α,β , γ̆ , δ,� (·, ·), ρ̆,η, θ )-V-pseudoinvex at x∗;
(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) � , for all x ∈ F.

Then x∗ is an efficient solution of (P).

Proof (a): Let x be an arbitrary feasible solution to (P). Since Gjm (x, tm) �  = Gjm (x∗, tm),
it follows that

ν∑

m=

v∗
mπm

(
x, x∗)Gjm

(
x, tm)

�
ν∑

m=

v∗
mπm

(
x, x∗)Gjm

(
x∗, tm)

,

and so


α(x, x∗)

γ̂
(
x, x∗)(eα(x,x∗)

∑ν
m= πm(x,x∗)[v∗

mGjm (x,tm)–v∗
mGjm (x∗ ,tm)] – 

)
� 

by using α(x, x∗) �=  and γ̂ (x, x∗) � . In light of (ii), this inequality implies that


β(x, x∗)

〈
ν∑

m=

v∗
m∇ωjm

(
x∗, tm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ̂
(
x, x∗)∥∥θ

(
x, x∗)∥∥. (.)

Similarly, the assumptions in (iii) lead to the following inequality:


β(x, x∗)

〈
ν∑

m=ν+

v∗
m∇�km

(
x∗, sm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ̆
(
x, x∗)∥∥θ

(
x, x∗)∥∥. (.)

Now combining (.), (.), and (.), and using (iv), we obtain


β(x, x∗)

〈 p∑

i=

u∗
i
[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ̄
(
x, x∗)∥∥θ

(
x, x∗)∥∥,

which in view of (i) implies that


α(x, x∗)

γ̄
(
x, x∗)(eα(x,x∗)

∑p
i= u∗

i ξi(x,x∗){fi(x)–λ∗
i gi(x)–[fi(x∗)–λ∗

i gi(x∗)]} – 
)
� .

Since γ̄ (x, x∗) >  and ϕ(x∗) = λ∗, this inequality implies that

p∑

i=

u∗
i ξi

(
x, x∗)[fi(x) – λ∗

i gi(x)
]
� .



Verma and Seol Journal of Inequalities and Applications  (2015) 2015:252 Page 13 of 18

In the proof of Theorem ., it was shown that this inequality leads to the conclusion that
x∗ is an efficient solution of (P).

(b)-(e): The proofs are similar to that of part (a). �

Now we briefly discuss some modifications of Theorems . and . based on replacing
(.) with an inequality.

Theorem . Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and Hk(·, s) be
differentiable at x∗, for all t ∈ Tj and s ∈ Sk , j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U
and integers ν and ν , with  � ν � ν � n + , such that there exist ν indices jm, with
 � jm � q, together with ν points tm ∈ T̂jm (x∗), m ∈ ν, ν – ν indices km, with  � km � r,
together with ν – ν points sm ∈ Skm , m ∈ ν\ν, and ν real numbers v∗

m, with v∗
m >  for

m ∈ ν, such that the following inequality holds:


β(x, x∗)

〈 p∑

i=

u∗
i
[∇zhi

(
x∗, z

)
– λ∗

i ∇zκi
(
x∗, z

)]
+

ν∑

m=

v∗
m∇zωjm

(
x∗, tm, z

)

+
ν∑

m=ν+

v∗
m∇z�km

(
x∗, sm, z

)
, eβ(x,x∗)η(x,x∗) – 

〉

≥ , (.)

where β : X × X → R and z ∈ R
n. Furthermore, assume that either one of the two sets of

conditions specified in Theorem . is satisfied. Then x∗ is an efficient solution of (P).

We observe that any solution of (.) is also a solution of (.), but the converse may
not be true.

4 Generalized sufficiency criteria
In this section, we discuss several families of sufficient efficiency results under various ex-
ponential type HA(α,β ,γ , ξ ,η, h(·, ·),κ(·, ·),ω(·, ·),� (·, ·),ρ, θ )-V-invexity hypotheses im-
posed on certain vector functions whose components are formed by considering different
combinations of the problem functions. This is accomplished by applying a certain type of
partitioning scheme. Let ν and ν be integers, with  � ν � ν � n + , and let {J, J, . . . , JM}
and {K, K, . . . , KM} be partitions of the sets ν and ν\ν, respectively; thus, Ji ⊆ ν for each
i ∈ M ∪ {}, Ji ∩ Jj = ∅ for each i, j ∈ M ∪ {} with i �= j, and

⋃M
i= Ji = ν. Obviously, similar

properties hold for {K, K, . . . , KM}. Moreover, if m and m are the numbers of the par-
titioning sets of ν and ν\ν, respectively, then M = max{m, m} and Ji = ∅ or Ki = ∅ for
i > min{m, m}.

In addition, we use the real-valued functions 
i(·, u, v,λ, t̄, s̄) and �τ (·, v, t̄, s̄), τ ∈ M, de-
fined, for fixed u, v, λ, t̄ ≡ (t, t, . . . , tν ), and s̄ ≡ (sν+, sν+, . . . , sν), on X as follows:


i(z, u, v,λ, t̄, s̄) = ui

[
fi(z) – λigi(z) +

∑

m∈J

vmGjm
(
z, tm)

+
∑

m∈K

vmHkm

(
z, sm)

]
, i ∈ p,

�τ (z, v, t̄, s̄) =
∑

m∈Jτ

vmGjm
(
z, tm)

+
∑

m∈Kτ

vmHkm

(
z, sm)

, τ ∈ M.

Making use of the sets and functions defined above, we can now formulate our first
collection of generalized sufficiency results for (P) as follows.
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Theorem . Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and Hk(·, s) be
differentiable at x∗, for all t ∈ Tj and s ∈ Sk , j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U
and integers ν and ν , with  � ν � ν � n + , such that there exist ν indices jm, with
 � jm � q, together with ν points tm ∈ T̂jm (x∗), m ∈ ν, ν – ν indices km, with  � km � r,
together with ν – ν points sm ∈ Skm , m ∈ ν\ν, and ν real numbers v∗

m, with v∗
m >  for

m ∈ ν, such that (.) holds. Assume, furthermore, that any one of the following three sets
of hypotheses is satisfied:

(a) (i) (
(·, u∗, v∗,λ∗, t̄, s̄), . . . ,
p(·, u∗, v∗,λ∗, t̄, s̄)) is exponential type
HA(α,β , γ̄ , ξ ,η, h(·, ·),κ(·, ·),ω(·, ·),� (·, ·), ρ̄, θ )-V-pseudoinvex at x∗ and
γ̄ (x, x∗) > , for all x ∈ F;

(ii) (�(·, v∗, t̄, s̄), . . . ,�M(·, v∗, t̄, s̄)) is exponential type
HA(α,β , γ̂ ,π ,η,ω(·, ·),� (·, ·), ρ̂, θ )-V-quasiinvex at x∗;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) � ;
(b) (i) (
(·, u∗, v∗,λ∗, t̄, s̄), . . . ,
p(·, u∗, v∗,λ∗, t̄, s̄)) is prestrictly exponential type

HA(α,β , γ̄ , ξ ,η, h(·, ·),κ(·, ·),ω(·, ·),� (·, ·), ρ̄, θ )-V-quasiinvex at x∗ and
γ̄ (x, x∗) > , for all x ∈ F;

(ii) (�(·, v∗, t̄, s̄), . . . ,�M(·, v∗, t̄, s̄)) is exponential type
HA(α,β , γ̂ ,π ,η,ω(·, ·),� (·, ·), ρ̂, θ )-V-quasiinvex at x∗;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) > ;
(c) (i) (
(·, u∗, v∗,λ∗, t̄, s̄), . . . ,
p(·, u∗, v∗,λ∗, t̄, s̄)) is prestrictly exponential type

HA(α,β , γ̄ , ξ ,η, h(·, ·),κ(·, ·),ω(·, ·),� (·, ·), ρ̄, θ )-V-quasiinvex at x∗ and
γ̄ (x, x∗) > , for all x ∈ F;

(ii) (�(·, v∗, t̄, s̄), . . . ,�M(·, v∗, t̄, s̄)) is strictly exponential type
HA(α,β , γ̂ ,π ,η,ω(·, ·),� (·, ·), ρ̂, θ )-V-pseudoinvex at x∗;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) � .
Then x∗ is an efficient solution of (P).

Proof Let x be an arbitrary feasible solution of (P).
(a): It is clear that (.) can be expressed as follows:

p∑

i=

u∗
i
[∇hi

(
x∗, z

)
– λ∗

i ∇κi
(
x∗, z

)]
+

∑

m∈J

v∗
m∇ωjm

(
x∗, tm, z

)
+

∑

m∈K

v∗
m∇�km

(
x∗, sm, z

)

+
M∑

τ=

[∑

m∈Jτ

v∗
m∇ωjm

(
x∗, tm, z

)
+

∑

m∈Kτ

v∗
m∇�km

(
x∗, sm, z

)
]

= . (.)

Since x, x∗ ∈ F, v∗
m > , and tm ∈ T̂jm (x∗), m ∈ ν, it follows that

M∑

τ=

πτ

(
x, x∗)�τ

(
x, v∗, t̄, s̄

)
=

M∑

τ=

πτ

(
x, x∗)

[∑

m∈Jτ

v∗
mGjm

(
x, tm)

+
∑

m∈Kτ

v∗
mHkm

(
x, sm)]

� 

=
M∑

τ=

πτ

(
x, x∗)

[∑

m∈Jτ

v∗
mGjm

(
x∗, tm)

+
∑

m∈Kτ

v∗
mHkm

(
x∗, sm)]

=
M∑

τ=

πτ

(
x, x∗)�τ

(
x∗, v∗, t̄, s̄

)
,
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and hence


α(x, x∗)

γ̂
(
x, x∗)(eα(x,x∗)

∑M
τ= πτ (x,x∗)[�τ (x,v∗ ,t̄,s̄)–�τ (x∗ ,v∗ ,t̄,s̄)] – 

)
� ,

which using (ii) implies that


β(x, x∗)

〈 M∑

τ=

[∑

m∈Jτ

v∗
m∇ωjm

(
x∗, tm, z

)
+

∑

m∈Kτ

v∗
m∇�km

(
x∗, sm, z

)
]

, eβ(x,x∗)η(x,x∗) – 

〉

� –ρ̂
(
x, x∗)∥∥θ

(
x, x∗)∥∥. (.)

Combining (.) and (.), and using (iii) we get


β(x, x∗)

〈 p∑

i=

u∗
i
[∇fi

(
x∗) – λ∗

i ∇gi
(
x∗)] +

∑

m∈J

v∗
m∇Gjm

(
x∗, tm)

+
∑

m∈K

v∗
m∇Hkm

(
x∗, sm)

, eβ(x,x∗)η(x,x∗) – 

〉

� ρ̂
(
x, x∗)∥∥θ

(
x, x∗)∥∥ � –ρ̄

(
x, x∗)∥∥θ

(
x, x∗)∥∥,

which by virtue of (i) implies that


α(x, x∗)

γ̄
(
x, x∗)(eα(x,x∗)

∑p
i= ξi(x,x∗)[
i(x,u∗ ,v∗ ,λ∗ ,t̄,s̄)–
i(x∗ ,u∗ ,v∗ ,λ∗ ,t̄,s̄)] – 

)
� .

Since γ̄ (x, x∗) > , this inequality implies that

p∑

i=

ξi
(
x, x∗)
i

(
x, u∗, v∗,λ∗, t̄, s̄

)
�

p∑

i=

ξi
(
x, x∗)
i

(
x∗, u∗, v∗,λ∗, t̄, s̄

)
] = ,

where the equality follows from the fact that λ∗
i = ϕi(x∗), i ∈ p, tm ∈ T̂jm (x∗), and x∗ ∈ F.

Because x ∈ F and v∗
m >  for each m ∈ ν, this inequality further reduces to

p∑

i=

u∗
i ξi

(
x, x∗)[fi(x) – λ∗

i gi(x)
]
� .

Now it follows that x∗ is an efficient solution to (P). The rest of the proofs follow from
part (a), and this concludes the proof. �

Next, we present the dual problem (DI) (which is new) to primal problem (P) based on
the parametric efficiency conditions for (P) as an example of a semiinfinite multiobjective
fractional programming dual problem.

Example . Consider the dual problem (DI) to (P) as follows:

(DI) Maximizeλ = (λ, . . . ,λp)
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subject to

p∑

i=

ui
[∇zhi(y, z) – λ∇zκi(y, z)

]
+

ν∑

m=

vm∇zωjm
(
y, tm, z

)

+
ν∑

m=ν+

vm∇z�km

(
y, sm, z

)
= , (.)

p∑

i=

ui
[
fi(y) – λigi(y)

]
+

ν∑

m=

vmGjm
(
y, tm)

+
ν∑

m=ν+

vmHkm

(
y, sm)

� . (.)

It can be shown that (DI) is a dual problem to (P) by applying higher order exponential
type hybrid invexity assumptions. Let x and y be arbitrary feasible solutions to (P) and
(DI), respectively. Assume that the function L(·, u, v,λ, t̄, s̄) : X →R

p defined by

L(ζ , u, v,λ) =
(
L(ζ , u, v,λ, t̄, s̄), . . . , Lp(ζ , u, v,λ, t̄, s̄)

)

is higher order exponential type hybrid (α,β ,γ ,η, h(·, ·),κ(·, ·),ω(·, ·, ·),� (·, ·, ·),ρ,
θ )-pseudoinvex at y for γ (x, y) > , where

Li(ζ , u, v,λ, t̄, s̄)

= ui

[

fi(ζ ) – λigi(ζ ) +
ν∑

m=

vmGjm
(
ζ , tm)

+
ν∑

m=ν+

vmHkm

(
ζ , sm)

]

, i ∈ p.

Then from the pseudoinvexity assumption and (.) it follows that


α(x, y)

γ (x, y)
(
eα(x,y)

∑p
i=[Li(x,u,v,λ,t̄,s̄)–Li(y,u,v,λ,t̄,s̄) – 

)
� .

If we assume that α(x, y) >  (while we arrive at the same conclusion for α(x, y) < ) and
γ (x, y) > , then we have

eα(x,y)
∑p

i=[Li(x,u,v,λ,t̄,s̄)–Li(y,u,v,λ,t̄,s̄) � .

This implies

p∑

i=

Li(x, u, v,λ, t̄, s̄) �
p∑

i=

[Li(y, u, v,λ, t̄, s̄) � .

Since x ∈ F and vm > , m ∈ ν, the above inequality reduces to

p∑

i=

ui
[
fi(x) – λigi(x)

]
� . (.)

Since u > , i ∈ p, it further follows that

(
f(x) – λg(x), . . . , fp(x) – λpgp(x)

)
� (, . . . , ),
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which in turn implies that

ϕ(x) =
(

f(x)
g(x)

, . . . ,
fp(x)
gp(x)

)
� (λ, . . . ,λp) = λ.

This results in ϕ(x) � λ, that is, (DI) is a dual problem to (P).
Furthermore, the dual problem (DI) generalizes most of the duality models, especially

in the context of semiinfinite multiobjective fractional programming problems.

5 Concluding remarks
In this communication we established several results based on sufficient efficiency condi-
tions for achieving efficient solutions to semiinfinite multiobjective fractional program-
ming problems under the exponential type HA(α,β ,γ , ξ ,η, h(·, ·, ·),ρ, θ )-V-invexity hy-
potheses and generalized sufficiency criteria, based on certain partitioning schemes im-
posed on certain vector functions. The obtained results can further be applied/generalized
to a wide range of problems on higher order invexities.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have contributed equally to this research and approved the revised version.

Acknowledgements
The authors are greatly indebted to the reviewers for their valuable comments and suggestions leading to the improved
version of this article.

Received: 30 May 2015 Accepted: 2 August 2015

References
1. Zalmai, GJ: Hanson-Antczak-type generalized (α,β ,γ ,ξ ,η,ρ ,θ )-V-invex functions in semiinfinite multiobjective

fractional programming. Part I: sufficient efficiency conditions. Adv. Nonlinear Var. Inequal. 16(1), 91-114 (2013)
2. Antczak, T: The notion of V-r-invexity in differentiable multiobjective programming. J. Appl. Anal. 11, 63-79 (2005)
3. Verma, RU: Weak ε-efficiency conditions for multiobjective fractional programming. Appl. Math. Comput. 219,

6819-6827 (2013)
4. Verma, RU: Second-order (
,η,ρ ,θ )-invexities and parameter-free ε-efficiency conditions for multiobjective discrete

minmax fractional programming problems. Adv. Nonlinear Var. Inequal. 17(1), 27-46 (2014)
5. Verma, RU: New ε-optimality conditions for multiobjective fractional subset programming problems. Trans. Math.

Program. Appl. 1(1), 69-89 (2013)
6. Antczak, T: Optimality and duality for nonsmooth multiobjective programming problems with V-r-invexity. J. Glob.

Optim. 45, 319-334 (2009)
7. Ben-Israel, A, Mond, B: What is invexity? J. Aust. Math. Soc. Ser. B, Appl. Math 28, 1-9 (1986)
8. Brosowski, B: Parametric Semiinfinite Optimization. Peter Lang, Frankfurt (1982)
9. Chen, H, Hu, CF: On the resolution of the Vasicek-type interest rate model. Optimization 58, 809-822 (2009)
10. Craven, BD: Invex functions and constrained local minima. Bull. Aust. Math. Soc. 24, 357-366 (1981)
11. Daum, S, Werner, R: A novel feasible discretization method for linear semi-infinite programming applied to basket

option pricing. Optimization 60, 1379-1398 (2011)
12. Ergenç, T, Pickl, SW, Radde, N, Weber, GW: Generalized semi-infinite optimization and anticipatory systems. Int.

J. Comput. Anticip. Syst. 15, 3-30 (2004)
13. Fiacco, AV, Kortanek, KO (eds.): Semi-Infinite Programming and Applications. Lecture Notes in Economics and

Mathematical Systems, vol. 215. Springer, Berlin (1983)
14. Giorgi, G, Guerraggio, A: Various types of nonsmooth invex functions. J. Inf. Optim. Sci. 17, 137-150 (1996)
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