411 research outputs found

    Polariton Condensate Transistor Switch

    Full text link
    A polariton condensate transistor switch is realized through optical excitation of a microcavity ridge with two beams. The ballistically ejected polaritons from a condensate formed at the source are gated using the 20 times weaker second beam to switch on and off the flux of polaritons. In the absence of the gate beam the small built-in detuning creates potential landscape in which ejected polaritons are channelled toward the end of the ridge where they condense. The low loss photon-like propagation combined with strong nonlinearities associated with their excitonic component makes polariton based transistors particularly attractive for the implementation of all-optical integrated circuits

    Energy relaxation of exciton-polariton condensates in quasi-1D microcavities

    Full text link
    We present a time-resolved study of energy relaxation and trapping dynamics of polariton condensates in a semiconductor microcavity ridge. The combination of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity gives rise to profuse quantum phenomena where the repulsive potentials created by the lasers allow the modulation and control of the polariton flow. We analyze in detail the dependence of the dynamics on the power of both lasers and determine the optimum conditions for realizing an all-optical polariton condensate transistor switch. The experimental results are interpreted in the light of simulations based on a generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 15 pages, 20 figure

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    Spin Selective Filtering of Polariton Condensate Flow

    Full text link
    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.Comment: 5 pages, 4 figure

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure
    • …
    corecore