745 research outputs found

    Effects of Proton Irradiation on Structural and Electrochemical Charge Storage Properties of TiO\u3csub\u3e2 \u3c/sub\u3eNanotube Electrode for Lithium-Ion Batteries

    Get PDF
    The effects of proton irradiation on nanostructured metal oxides have been investigated. Recent studies suggest that the presence of structural defects (e.g. vacancies and interstitials) in metal oxides may enhance the material’s electrochemical charge storage capacity. A new approach to introduce defects in electrode materials is to use ion irradiation as it can produce a supersaturation of point defects in the target material. In this work we report the effect of low-energy proton irradiation on amorphous TiO2 nanotube electrodes at both room temperature and high temperature (250 ˚C). Upon room temperature irradiation the nanotubes demonstrate an irradiation-induced phase transformation to a mixture of amorphous, anatase, and rutile domains while showing a 35% reduction in capacity compared to anatase TiO2. On the other hand, the high temperature proton irradiation induced a disordered rutile phase within the nanotubes as characterized by Raman spectroscopy and transmission electron microscopy, which displays an improved capacity by 20% at ~ 240 mAh g-1 as well as improved rate capability compared to unirradiated anatase sample. Voltammetric sweep data was used to determine the contributions from diffusion-limited intercalation and capacitive processes and it was found that the electrodes after irradiation has more contributions from diffusion in lithium charge storage. Our work suggests that tailoring the defect generation through ion irradiation within metal oxide electrodes could present a new avenue for design of advanced electrode materials

    Dynamics of Fattening and Thinning 2D Sessile Droplets

    Get PDF
    We investigate the dynamics of a droplet on a planar substrate as the droplet volume changes dynamically due to liquid being pumped in or out through a pore. We adopt a diffuse-interface formulation which is appropriately modified to account for a localized inflow–outflow boundary condition (the pore) at the bottom of the droplet, hence allowing to dynamically control its volume, as the droplet moves on a flat substrate with a periodic chemical pattern. We find that the droplet undergoes a stick–slip motion as the volume is increased (fattening droplet) which can be monitored by tracking the droplet contact points. If we then switch over to outflow conditions (thinning droplet), the droplet follows a different path (i.e., the distance of the droplet midpoint from the pore location evolves differently), giving rise to a hysteretic behavior. By means of geometrical arguments, we are able to theoretically construct the full bifurcation diagram of the droplet equilibria (positions and droplet shapes) as the droplet volume is changed, finding excellent agreement with time-dependent computations of our diffuse-interface model

    Selective activation of TNFR1 and NF-ÎşB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells

    Get PDF
    Background: Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells. Methods: Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53. Results: KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65. Conclusions: Our findings demonstrate, for the first time, the selective anticancer properties of KC-53 towards leukemic cell lines and provide a detailed understanding of the molecular events underlying its dual anti-proliferative and pro-apoptotic properties. These results provide new insights into the development of innovative and targeted therapies for the treatment of some forms of leukemia

    Coupling the time-warp algorithm with the graph-theoretical kinetic Monte Carlo framework for distributed simulations of heterogeneous catalysts

    Get PDF
    Despite the successful and ever widening adoption of kinetic Monte Carlo (KMC) simulations in the area of surface science and heterogeneous catalysis, the accessible length scales are still limited by the inherently sequential nature of the KMC framework. Simulating long-range surface phenomena, such as catalytic reconstruction and pattern formation, requires consideration of large surfaces/lattices, at the μm scale and beyond. However, handling such lattices with the sequential KMC framework is extremely challenging due to the heavy memory footprint and computational demand. The Time-Warp algorithm proposed by Jefferson [ACM. Trans. Program. Lang. Syst., 1985. 7: 404-425] offers a way to enable distributed parallelization of discrete event simulations. Thus, to enable high-fidelity simulations of challenging systems in heterogeneous catalysis, we have coupled the Time-Warp algorithm with the Graph-Theoretical KMC framework [J. Chem. Phys., 134(21): 214115; J. Chem. Phys., 139(22): 224706] and implemented the approach in the general-purpose KMC code Zacros. We have further developed a “parallel-emulation” serial algorithm, which produces identical results to those obtained from the distributed runs (with the Time-Warp algorithm) thereby validating the correctness of our implementation. These advancements make Zacros the first-of-its-kind general-purpose KMC code with distributed computing capabilities, thereby opening up opportunities for detailed meso-scale studies of heterogeneous catalysts and closer-than-ever comparisons of theory with experiments

    GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Mappings

    Get PDF
    In this paper we present the tool GeoTriples that allows the transformation of Earth Observation data and geospatial data into RDF graphs, by using and extending the R2RML mapping language to be able to deal with the specificities of geospatial data. GeoTriples is a semi-automated tool that transforms geospatial information into RDF following the state of the art vocabularies like GeoSPARQL and stSPARQL, but at the same time it is not tightly coupled to a specific vocabulary

    Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    Get PDF
    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy) ethyl methacrylate)/Pd (LauMA(x)-b-AEMA(y)/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 degrees C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 degrees C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions
    • …
    corecore