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Abstract

Despite the successful and ever widening adoption of kinetic Monte Carlo
(KMC) simulations in the area of surface science and heterogeneous catalysis,
the accessible length scales are still limited by the inherently sequential na-
ture of the KMC framework. Simulating long-range surface phenomena, such
as catalytic reconstruction and pattern formation, requires consideration of
large surfaces/lattices, at the µm scale and beyond. However, handling such
lattices with the sequential KMC framework is extremely challenging due to
the heavy memory footprint and computational demand. The Time-Warp
algorithm proposed by Jefferson [ACM. Trans. Program. Lang. Syst., 1985.
7: 404-425] offers a way to enable distributed parallelization of discrete event
simulations. Thus, to enable high-fidelity simulations of challenging systems
in heterogeneous catalysis, we have coupled the Time-Warp algorithm with
the Graph-Theoretical KMC framework [J. Chem. Phys., 134(21): 214115;
J. Chem. Phys., 139(22): 224706] and implemented the approach in the
general-purpose KMC code Zacros. We have further developed a “parallel-
emulation” serial algorithm, which produces identical results to those ob-
tained from the distributed runs (with the Time-Warp algorithm) thereby
validating the correctness of our implementation. These advancements make
Zacros the first-of-its-kind general-purpose KMC code with distributed com-
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puting capabilities, thereby opening up opportunities for detailed meso-scale
studies of heterogeneous catalysts and closer-than-ever comparisons of theory
with experiments.

Keywords: Kinetic Monte Carlo, Lattice, Time-Warp algorithm, Catalysis,
Materials Science, Distributed simulation

1. Introduction

Kinetic Monte Carlo (KMC) simulations have been successfully used in
a variety of research fields [1, 2, 3, 4, 5, 6, 7, 8, 9] to predict the dynamic
properties of materials and gain fundamental insights into the underlying mi-
croscopic phenomena. Heterogeneous catalysis is one such field that has seen
a wide adoption of on-lattice KMC simulations, in which the catalyst surface
is represented as a lattice [10, 5, 11, 12, 13, 14, 15, 16] (from here onwards,
KMC refers to on-lattice KMC). Adsorption, desorption, diffusion, and reac-
tions are considered as the elementary events of interest, whose rates can be
obtained from first-principles. To this end, density functional theory (DFT)
calculations, which strike a practical balance between accuracy and compu-
tational expense, are used in tandem with transition state theory approaches.
Properties of interest, such as activity, selectivity and stability, which serve
as metrics in the identification of promising catalysts, can be calculated by
sampling the realizations (stochastic trajectories) obtained by KMC simula-
tions. In addition, such simulations can yield a fundamental understanding
of the link between the underlying microscopic mechanism and the resultant
macroscopic observables. Such a multi-scale understanding aids in the devel-
opment of predictive models, which are exceptionally promising in designing
better catalysts, in line with the “rational catalyst design” vision. In turn,
the accurate prediction of catalytic performance metrics (activity, selectiv-
ity, stability) is critical to the design of reactors and the improvement of the
overall performance of a chemical process. Indeed, the increasing interest in
KMC simulations for catalysis and chemical reaction engineering applications
has motivated the development of general-purpose software, such as Zacros
[17, 18] (https://zacros.org/), a versatile, high-fidelity Graph-Theoretical
(GT)-KMC code. SPPARKS [3], CARLOS [19], kmos [20], and KMCLib [21]
are also examples of popular KMC codes available.

The complexity of a KMC simulation varies depending on the specific
features of the diverse elements involved in the model: lattice structure,
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binding configurations of adsorbates, reaction mechanism, and adsorbate-
adsorbate lateral interactions. Thus, systems with e.g. multidentate ad-
sorbates, long-range lateral interactions and complicated reaction pathways
tend to be computationally expensive. Besides, the KMC framework is in-
herently sequential, in the sense that lattice events are executed one after
another based on their priority (an event with lower KMC time has a higher
priority). For these reasons, KMC simulations of heterogeneous catalysts are
limited to small lattices, typically on the order of 10 nm× 10 nm [22, 23].

There have been numerous efforts in improving the performance of KMC
simulations, and this is still a topical research area. Approximate methods,
such as scaling down rate-constants [24, 25, 26, 27, 28], lumping states to-
gether and applying theory of absorbing Markov chains [29, 30, 31], and
implementing fast species redistribution [32] have been used to alleviate
the time-scale separation challenge, whereby certain “uninteresting” frequent
events, such as diffusional hops, dominate the simulation effort, at the ex-
pense of “significant” events such as reactions. On the other hand, exact
efficient algorithms/implementations [33, 34, 17, 35, 18, 36, 37, 38] have im-
proved the performance of KMC simulations without the loss of accuracy.

Although KMC simulations of small to moderately sized lattices can yield
acceptable-quality estimates of the aforementioned observables, understand-
ing phenomena involving long-range spatial variations, such as catalytic sur-
face reconstruction and pattern formation, necessitate simulations of large
systems. In such scenarios, the required size of the simulated lattice would
be dictated by the characteristic wavelength of the pattern, which could be
in the order of µm to mm. For instance, in the context of reconstruction,
oscillations and pattern formation have indeed been observed at the µm scale
[39], and lead to instabilities that must be controlled at the reactor scale [40].
Thus, in addition to the previously noted complexities involved in a KMC
simulation, the need to consider large lattices poses extra challenges in terms
of memory footprint and computational time. At present, it is infeasible
to simulate realistic chemistries on catalytic surfaces that span µm in size
within the sequential KMC framework, and distributed parallelization is a
way to address this challenge.

Different approaches, such as the synchronous [41], the synchronous re-
laxation [42], the optimistic Time-Warp [43], the optimistic synchronous re-
laxation [44, 45], and the semi-rigorous synchronous algorithms [46, 47] are
available for the distributed parallelization of discrete event simulations. At
a high level, these approaches entail appropriate domain decomposition and
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event execution protocols that either avoid boundary conflicts via synchro-
nization, or employ rollbacks and re-simulations to correct for any causality
violations arising from such conflicts. In the latter approach, provisional
KMC trajectories are progressively amended and, once validated to be mu-
tually consistent, are finally incorporated into the global simulation history.
This approach is reminiscent of the more general concept of “software trans-
actional memory” [48], by which a processor performs modifications to shared
memory, at first independently of other processors. Then, these transactions
are either validated and committed to memory, or aborted, in which case any
changes are rolled-back and retried.

In terms of general software implementations in the computational cataly-
sis and materials science fields, an approximate approach similar to the semi-
rigorous synchronous sub-lattice algorithm [46, 47] has been implemented in
SPPARKS, and used mainly for materials science applications [49, 50, 51, 52].
Additionally, the ‘Catalysis’ module of SPPARKS [53], can be used to per-
form distributed KMC simulations of heterogeneous catalysts. Moreover,
SPOCK [54] is an exact KMC implementation based on the ROSS [55] dis-
crete event simulator which incorporates Time-Warp features. SPOCK has
been shown to scale well for model problems in 3D, capturing lattice gas dy-
namics and grain growth [54]. However, building custom models in SPOCK
is somewhat complicated and requires the user to supply code for forward
and reverse execution of events (the latter to be used in rollbacks). In ad-
dition, neither code appears to provide a rigorous mechanism for validating
the correctness (or accuracy) of simulated runs, thereby safeguarding against
coding errors or undesirable approximation errors. It thus emerges that, even
though scalable simulation algorithms at the electronic and atomistic levels
are already at a mature stage (see e.g. Ref. [56]), distributed mesoscopic scale
simulation approaches are still at their infancy. To our knowledge, a vali-
dated scalable implementation of an exact general-purpose KMC approach
for simulations of heterogeneous catalysts, is still lacking.

To fill this gap, we have coupled the graph-theoretical KMC framework
with the optimistic Time-Warp algorithm and have implemented the ap-
proach in Zacros. In this approach, the lattice is decomposed into domains
that are assigned to different processing elements (PEs) (each of which may
be handled by a single core or involve several threads). Each PE executes
the KMC algorithm for the assigned domain and communicates with the
neighbors, if necessary. Thus, elementary events that happen at the interior
of the lattice (far from domain boundaries), are handled privately and asyn-
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chronously, while events close to the boundaries have to be communicated as
appropriate. Communication among processes is handled using the message
passing interface (MPI) framework (https://www.mpi-forum.org/). Due
to the asynchronous execution of “internal” events, each PE follows its own
simulation time; thus, when “boundary events” happen, causality violations
may arise. Such violations are resolved using the state-saving, rollback, and
anti-message protocols of the Time-Warp algorithm. Additionally, the nec-
essary protocols for the computation of the global virtual time (the collective
KMC time of all PEs) and the termination of the distributed run are imple-
mented.

Crucially, a fundamental constraint underpinning the Time-Warp algo-
rithm, enables us to develop a simple variant of the serial KMC algorithm
that enables the validation of our implementation. For our case of tempo-
ral point processes, involving events that happen instantaneously after some
random inter-arrival time (quiescence time), the constraint can be stated as
follows: if an event A causes an event B, then event A must be scheduled
and executed before (in real-time terms) event B. On this basis, we develop
a “parallel-emulation” scheme, i.e. a serial KMC simulation protocol that
utilizes the deviates generated by the random number generator in the same
order as in the distributed run. Thus, the results of the parallel-emulation
runs must be identical to those of distributed runs (down to the stochastic
fluctuations), enabling meaningful comparisons to be made.

The rest of the paper is organized as follows. The implementation of the
different Time-Warp simulation components and protocols is discussed in de-
tail in section 2: Methodology. The parallel-emulation method is presented
in section 2.9: Parallel-Emulation. Subsequently, the validation of our im-
plementation and the performance benchmarks (in terms of both weak- and
strong-scaling) are presented and discussed in section 3: Results and Discus-
sion, followed by section 4: Summary and Conclusions.

2. Methodology

In this section, starting with a brief description of the sequential KMC
framework, we discuss the coupling of GT-KMC and Time-Warp. We ex-
amine in detail the necessary protocols for domain decomposition, commu-
nication of boundary-events, resolution of causality violations, computation
of global virtual time, and termination of the distributed run.
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2.1. Kinetic Monte Carlo framework and parallelization strategy
A KMC simulation of a surface chemistry requires three inputs: a lat-

tice representation of the surface, a set of energetic patterns (also referred to
as clusters/figures) describing lateral interactions among adsorbates, and a
reaction mechanism consisting of elementary events (also referred to as reac-
tion patterns). In the GT-KMC framework, the lattice structure, energetic
patterns, and reaction patterns are represented as graphs, thereby making it
possible to capture complex entities in a versatile way. Before the start of the
KMC run, all input is parsed and some preparatory operations take place,
e.g. the lattice state is initialized with all sites empty (or with a given initial
state if desired), and a random number generator (used for the calculation
of the random times of event occurrence) is provided with an initial seed.

Upon commencement of the KMC run, all possible instances of the ele-
mentary events on the lattice are detected and added to the process queue
(procQueue). The latter is essentially a complete “catalogue” of all adsorp-
tion, desorption, diffusion and reaction events that are possible given a lattice
state and a reaction mechanism, and is kept up to date throughout the KMC
run. Finding instances of an elementary event on the lattice involves map-
ping sites of the corresponding reaction pattern to lattice sites, so that the
connectivity and site occupancy on the lattice are as defined in the initial
state of the reaction (this is done by solving subgraph isomorphism problems
as explained in Stamatakis and Vlachos [17]). This procedure is repeated
for all the reaction patterns prescribed in the reaction mechanism, and the
detected lattice event instances are added to procQueue.

In addition, procQueue also stores the “absolute” KMC time for the oc-
currence of the each event, which is calculated as the sum of the current
KMC time and the inter-arrival time of the KMC event (also known as qui-
escence or waiting time). For time-independent reaction rates (for instance,
when the temperature of the system is constant), the pertinent inter-arrival
times are generated as exponential deviates, with rate parameters equal to
the events’ rate constants. The latter may be influenced by the presence of
spectator species in the neighborhood of the event, which exert lateral in-
teractions to the reactants. Within the GT-KMC, such effects are captured
by considering environment-dependent activation energies, parameterized by
Bronsted-Evans-Polanyi equations [57, 58, 18]. Computing the effect of in-
teractions requires the detection of energetic patterns, which uses approaches
similar to the detection of reaction patterns (subgraph isomorphism). The
reaction rate constant of the event is then obtained using the Eyring equa-
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tion [59] following standard transition state theory approximations. Detailed
discussions on the computation of rates and occurrence times of events are
available in our previous publications [17, 5, 11, 37].

In a sequential KMC run, the algorithm first finds the most imminent
event listed in procQueue (i.e. the one that results in the smallest advance-
ment of KMC time). A sequence of operations (outlined in Algorithm 1)
handle the update of the lattice state, the pertinent data-structures and the
KMC time. Thus, the removal of energetic patterns and reaction events
whereby the reactants participate, happens first, followed by the removal of
the reactants themselves from the lattice. Subsequently, the new energetic
interactions are added to the pertinent data-structure. The algorithm pro-
ceeds with the detection of the new events that can happen, which are added
to procQueue (note that for the correct calculation of the kinetic constants
the energetic patterns must have already been detected and stored). In the
presence of lateral interactions, the rate constants of events in the neighbor-
hood of the just-executed reaction event must be updated, since changes in
the site occupancy will result in different interaction terms pre- versus post-
reaction. Finally, the KMC time and the step counter are advanced. The
execution of events results in the generation of a sequence of several lattice
states. Observables of interest, such as species coverages or catalytic activity,
are obtained as averages over these states.
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Algorithm 1: Sequential kinetic Monte Carlo algorithm

Data: Lattice, energetic clusters/figures, reaction mechanism,
temperature, gas phase pressure and composition.

Result: A trajectory of lattice states.
1 begin
2 Initialize the lattice state LattState with all sites empty;
3 Initialize globClusterEnerList with all lattice instances of

energetic patterns;
4 Initialize procQueue with all possible lattice events, including

occurrence times;
5 while tKMC ≤ tfinal

KMC ∧ curr step ≤ nsteps do
6 Find the most imminent event Enext among those in

procQueue;
7 Find the lattice adsorbates which participate in Enext as

reactants and store them in LattReacEnext;
8 Find the energetic patterns in which the adsorbates of

LattReacEnext participate and remove them from
globClusterEnerList ;

9 Find the elementary events in which the adsorbates of
LattReacEnext participate and remove them from
procQueue;

10 for A in LattReacEnext do
11 if A is referenced in any existing energetic or reaction

pattern then
12 Raise a fatal error and stop;
13 else
14 Remove A from the lattice;
15 end

16 end
17 Add the products of Enext to the lattice;
18 Detect the new energetic patterns in which the products of

Enext can participate and add them to GlobClusterEnerList ;
19 Detect the new lattice events in which the products of Enext

participate and add them to procQueue;
20 Update the rates and the occurrence times of affected events

that are in the neighborhood (region of influence) of Enext;
21 Set tKMC to the occurrence time of Enext; increment curr step

by 1;

22 end

23 end 8



Figure 1: Decomposition of a 6×6 square lattice (36 sites in total) into four 3×3 domains
(each with 9 sites). The sites of a domain are highlighted in the same color. Different
colors represent different domains assigned to different PEs.

In a distributed run, the whole lattice is decomposed into subdomains,
each of which is assigned to a PE (a processing element (PE) may be a CPU
core, or, more generally, an MPI process). A random number stream is in-
stantiated by each PE, either with the use of a distinct initial seed per PE for
development/testing purposes, or, more rigorously, with appropriate meth-
ods that yield multiple disjoint sub-streams from a long random sequence,
e.g. via the “jump-ahead” approach [60]. In addition to the operations just
noted for sequential KMC simulations, a distributed KMC run includes ad-
ditional protocols to handle the communication of boundary-events (sending
and receiving messages), appropriate actions in response to a received mes-
sage, the resolution of causality violations, the computation of global virtual
time, and the collective termination of the run. The pertinent operations rely
on two additional priority-sorted containers, a message queue (messgQueue)
and a state queue (stateQueue). The former stores all incoming and out-
going messages, while the latter stores “KMC states” which are obtained
at regular intervals and support the process of resolving causality violations
through roll-backs. In the following, we discuss the pertinent datastructures
and algorithmic components in detail.

2.2. Domain decomposition

In our implementation, we are dealing with periodic 2D lattices, which
can be generated by tiling a unit cell NC

α and NC
β times along the two unit

cell vectors α and β, respectively. We choose to work with subdomains
encompassing an equal number of unit cells along the α and β directions,
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since we would like to spread the load of communication due to boundary
events as equally as possible along the neighbors. As will become clear later,
the average frequency of message exchange between PEs depends on the
number of sites within their common boundary; the constraint just noted,
ensures the same number of sites for boundaries on different sides. Thus,
in the example of fig. 1 each unit cell is a square containing one site (for
simplicity unit cells are not drawn in the figure), and the lattice contains
6 × 6 = 36 sites in total. In this example, the lattice was partitioned into
four 3×3 domains, but it could also be partitioned into nine 2×2 subdomains,
in line with the aforementioned constraint (on the other hand, note that a
partitioning into six 2× 3 subdomains would violate this constraint).

In general, if we need to partition the NC
α × NC

β simulation cell into a
given number of PEs (MP

tot), we need to find the optimal “PE configuration”
MP

α ×MP
β , which makes use of as many PEs as possible. To this end, we

can define the number of unit cells in the “side” of the subdomain, SZ, such
that the subdomain will contain SZ×SZ unit cells in total, and then try to
solve:

minimize SZ ∈ ℵ subject to : NC
α = MP

α · SZ
NC
β = MP

β · SZ
MP

α ·MP
β ≤MP

tot

(1)

The problem amounts to finding the smallest common divisor of NC
α and NC

β

which is larger than

√
NC
α ·NC

β

MP
tot

.

The domain decomposition just discussed creates non-overlapping subdo-
mains. In the ideal scenario whereby all adsorbate species are mono-dentate,
and both the energetic interactions and the reaction events are limited to
single-site patterns only, the execution of an event in one domain does not
affect any events in other domains. In this case, the KMC simulation is
trivially parallel and each PE can proceed independently.

However, most surface phenomena in practical applications include ele-
mentary events that involve more than one site, for example diffusion of an
adsorbate from one site to another. Such events lead to coupling (causal
relations) between the simulated histories of neighboring domains. Coupling
may also arise from adsorbate-adsorbate lateral interactions and/or multi-
dentate species, whereby energetic patterns or adsorbate binding patterns
spread over multiple domains. To handle such cases, each PE must store and
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Figure 2: Domain-sites and halo-sites of processes. For example, in fig. 2c, sites colored
in red are the domain-sites and sites in other colors are halo-sites of PE-0.
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process information about sites that are close to the boundaries but belong
to neighboring domains. The region that contains these additional sites is
referred to as halo, and the sites themselves are referred to as halo-sites. The
width ω of the halo (in number of sites) is given by

ω = (dmax − 1) + (emax − 1) + (rmax − 1) = dmax + emax + rmax − 3 (2)

where dmax is the maximum denticity among all adsorbate species (the den-
ticity is the number of sites occupied by a species), emax is the maximum
depth among all energetic patterns, and rmax is the maximum depth among
all reaction patterns.

As a simple example, let us consider again the 6×6 periodic square lattice
of fig. 1 and a single mono-dentate adsorbate species. In terms of energetic
patterns, let us consider only a single body pattern (with energy contribution
equal to the adsorption energy of that species); the maximum depth among
energetic patterns is one. If single-site adsorption and desorption are the
only elementary events considered in the reaction mechanism, the maximum
depth among reaction patterns is also one. The width of the halo (eq. (2)) is
zero, and the corresponding domain decomposition of the lattice among four
PEs is shown in fig. 1. If, however, the diffusion of an adsorbate from its
bound-site to a neighboring site is considered as another elementary event,
the maximum depth among reaction patterns is two, and the width of the
halo becomes one. The corresponding domain decomposition including halo-
sites is shown in fig. 2.

As in a sequential KMC run, each PE in the distributed run manages a
procQueue datastructure that holds all possible KMC events associated with
its domain. To avoid duplication of events in the procQueue datastructures
of different PEs, we impose the following rule: a PE is permitted to add a
detected lattice event to its procQueue only if the lattice site that is mapped
to the first site of the reaction pattern is a domain-site (i.e. it is located in
the interior of the domain and not in the halo of that PE).

As an example, let us consider the sites that are handled by PE-1 (fig. 2a),
for a system with adsorption, desorption and diffusion events in the mecha-
nism. Considering a state whereby all the sites are empty, the possible events
are adsorptions on each and every site of the lattice. However, PE-1 adds the
adsorption events only associated with its domain-sites (i.e. the sites that are
highlighted in blue in fig. 2a). Adsorption events on halo-sites (represented
by a color other than blue in fig. 2a) are not the responsibility of PE-1, as
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the lattice site that is mapped to the first (and only, in this case) site in the
pattern (adsorption) is a halo-site.

Let us now consider the adsorption on site 11 as the most imminent

event and execute it. As site 11 is a domain-site of PE-1 and not a halo-

site of any of the neighboring PEs, adsorption on site 11 is an internal-
event. In general, we will use the term “internal-event” to refer to a lattice
event that involves only domain-sites of one PE and no halo-sites of any PE.

Once the adsorption on site 11 is executed, PE-1 deletes this event from
its procQueue, and adds therein five new events which have now become

feasible: diffusion of the newly added adsorbate from site 11 to any of its

neighboring sites 5 , 10 , 12 , 17 as well as desorption from site 11 .

Continuing with our example, let us assume that diffusion from site 11

to site 5 is currently the most imminent event and execute it. Both sites

are domain-sites of PE-1, but site 5 is also a halo-site of PE-3; such events
that involve at least one halo-site will henceforth be referred to as boundary-
events. Whenever such a boundary-event occurs, it has to be communicated,
as a message, from the PE that executes it to the neighboring PEs that share
any of the lattice sites involved in the boundary-event. Here, in our case PE-
1 communicates the boundary-event to PE-3, as site 5 is in the halo of the
latter PE. The message contains all the information about the boundary-
event (the KMC time thereof, the sites on which it took place, etc.), so that
the message receiver can execute that boundary-event at exactly the same
KMC time as the message sender. In our example, when PE-3 receives the
message about the diffusion of adsorbate onto site 5 , it schedules the event

and updates the occupancy of site 5 at the appropriate KMC time.
For the seamless operation of a distributed KMC simulation, one thus

requires a mechanism for sending and receiving messages “encoding” lattice
events, as well as a protocol for acting on a message that was received. The
latter is non-trivial; as noted in the introduction, the asynchronous nature
of the distributed KMC simulation may result in cases whereby a messaged
event should be scheduled in the past of the receiving PE. This leads to a
causality violation, since the “history” of the receiving PE has no record
of that event, or any subsequent events caused by it. Clearly, corrective
actions must be taken to resolve the causality violation and re-simulate a
KMC trajectory that takes into account the messaged event. The Time-Warp
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algorithm addresses such cases and orchestrates the distributed simulation in
a self-consistent way. We will thus continue our discussion with an overview
of the Time-Warp concept, followed by our implementation of the different
core protocols of the algorithm.

2.3. Outline of the Time-Warp algorithm

The main challenge that the Time-Warp algorithm addresses, is that a
causality violation (due to a messaged event that should be scheduled in the
past) may have far-reaching effects. This issue will be discussed in more

detail later, but as a motivating example consider the diffusion from site 11

to site 5 of fig. 2, which, as discussed in the previous section, has to be
communicated from PE-1 to PE-3. Suppose the timestamp of the diffusion
event was 1.3 ns while the KMC time of PE-3 was already 2.1 ns when
the message about that diffusion was received. Clearly, PE-3 will have to
roll-back to a time just before 1.3 ns, discard the history simulated from that
time-point onward, schedule the aforementioned diffusion event and simulate
any ensuing events.

The problem is that the discarded history may contain events that were

messaged to other PEs e.g. an adsorption event on site 28 at time 1.5
ns, communicated to PE-2. Suppose that the latter PE is at KMC time
2.0 ns and we have an effective way of communicating an “undo” action for
this adsorption. In turn, while PE-2 is correcting its history from 1.5 to 2.0
ns, it may have to communicate similar “undo” actions to other PEs. In
the worst-case scenario, the “original” causality violation (due to the first
message encoding a past event) leads to cascade of such violations that re-
quire corrective actions at a global level, i.e. involving all PEs. In practice,
however, the effects of a causality violation usually do not extend beyond a
certain limited range (dependent on the system simulated).

Thus, the objective of the Time-Warp algorithm is to resolve causality
violations by using as much as possible “local” operations, i.e. computing
or data-storing operations carried out in private by a PE, or messaging op-
erations that involve only “neighboring” PEs. With these key concepts in
mind, we can now discuss the main elements of the Time-Warp algorithm,
and the implementation thereof to GT-KMC simulations. Thus, the main
data-structures of Time-Warp KMC simulations are:

• Messages and anti-messages for the communication of boundary-events:
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– A message is an instruction for the receiver to schedule and execute
the corresponding event at the appropriate time.

– An anti-message is an instruction for the receiver to undo the event
of a previously received message. A message always precedes the
corresponding anti-message.

• Two queues storing information about events, maintained by each PE:

– A process queue (procQueue) that stores information about events
that are associated with the domain-sites of the PE.

∗ As mentioned before, only events in which the lattice site that
is mapped to the first site of the reaction pattern is a domain-
site are added to the PE’s procQueue.

∗ Events in which none of the sites involved belongs to the halo
of any PE are referred to as internal-events and do not need
to be communicated.

∗ Events in which at least one halo-site is involved are referred
to as boundary-events. A boundary-event needs to be com-
municated to the neighboring PEs to which the involved halo-
sites belong.

– A message queue (messgQueue) that stores information about
boundary-events communicated among neighboring PEs as mes-
sages. The boundary-events that are received by a PE are referred
to as “foreign-events”, to distinguish them from the boundary-
events that are sent by that PE to others.

• A time-sorted queue of KMC states (stateQueue), stored by each PE
to support the re-instating of an old KMC state in case of a roll-back
due to a causality violation.

The relevant procedures of Time-Warp KMC simulations are summarized as
follows:

• In each iteration of the main KMC loop, a PE checks for incoming
messages or anti-messages.

– If a message is received with time-stamp greater than the KMC
time of the receiver PE (i.e. “encodes” a future event), it is added
to the receiver’s messgQueue.
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– If an anti-message with a future action is received, the correspond-
ing message is deleted from the receiver’s messgQueue.

– On the other hand, received messages or anti-messages that en-
code actions in the past are referred to as “stragglers” and cause
causality violations. The straggler with the lowest time-stamp is
called “priority-straggler”. Handling stragglers is done in a similar
way to what was discussed above, with the additional corrective
actions necessary to restore causality in the KMC history.

• When causality violations occur they have to be handled appropriately:

– A PE performs a roll-back in time, thereby reinstating a KMC
state that has time-stamp less than that of the priority-straggler.

– During this roll-back, the PE issues anti-messages for all the no
longer valid messages (i.e. the previously sent messages that
have time-stamp greater than the priority-straggler’s time-stamp).
Once the anti-messages are sent, the PE deletes the corresponding
messages from its messgQueue.

– The PE also deletes any KMC states that have time-stamp greater
than or equal to the time-stamp of the priority-straggler, from its
stateQueue.

– Finally, the PE re-simulates the KMC history accounting for the
newly received message(s) or anti-message(s).

• In each iteration of the main KMC loop, a process executes the first
among: (1) the imminent event from its procQueue and (2) the immi-
nent foreign-event from its messgQueue.

• If the most imminent event is a boundary-event, the PE communi-
cates it as a message, to the neighboring PEs that share any of the
sites involved therein. The occurrence time of the boundary-event is
communicated as the message’s time-stamp.

– The message being sent is stored in the sender’s messgQueue, so
that if/when needed, in the case of a causality violation, the cor-
responding anti-message can be sent.

In the next few sections we will discuss these procedures in more detail,
starting with the implementation of message handling.
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Field name type

sender integer
receiver integer

time-stamp double
sign bool

eventtype integer
nsites integer
sites(:) integers

propensity double
∆Erxn double

Table 1: Message data-structure

2.4. Messages and message queue data-structures

Messages in the Time-Warp GT-KMC encode adsorption, desorption,
reaction or diffusion events that occur on the lattice, around the boundaries
of domains (more precisely, involve at least one halo site). A message is
implemented as a data-structure (table 1) with the following fields: sender
and receiver (integers giving the ranks of the corresponding PEs), timestamp
(double: the KMC time when the lattice event occurred), sign (boolean
variable, true for a message, false for an anti-message), eventtype (an integer
giving the type of elementary event, e.g. O2 adsorption, CO oxidation etc.),
nsites and sites (integers: the count of sites involved in the event and the
lattice site numbers thereof), and finally propensity and ∆Erxn (doubles: the
rate constant and the reaction energy of the lattice event).

Every PE maintains a time-sorted, or more generally priority-sorted, mes-
sage queue (messgQueue) to handle sent and received messages. The message
queue is implemented as a doubly linked list [61] in which messages are stored
in the nodes. Each node in messgQueue also contains a forward and a back-
ward pointer, which point to the queue’s next message and previous message,
respectively. Insertion of a node/message, deletion of a node/message, and
traversal of the queue are the procedures associated with messgQueue. The
queue also contains a pointer to the first received message that has not yet
been executed, which represents the most imminent foreign-event.
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2.5. Sending and receiving messages

The preparation of the message to be sent, makes use of a sequence of
calls to the MPI Pack subroutine, in order to “pack” the message datatype
(table 1) to contiguous memory. To ensure the robustness and efficiency
of our implementation, sending and receiving of messages happens in syn-
chronous mode, but with the use of non-blocking MPI subroutines. This
way, we have complete control of message buffering as per Algorithms 2
and 3, and at the same time we prevent deadlocks. Thus, the sending of
a message starts with the MPI Issend subroutine (line 15 of Algorithm
3), implementing a non-blocking (I) synchronous (s) send. For each initi-
ated communication request, MPI Issend provides a request-handle that
can subsequently be used by subroutine MPI Test (line 7 of Algorithm 2)
to assert whether the corresponding message has been received. The sending
of a message is complete only when MPI Test verifies the receipt thereof.
In the meantime (i.e. from the start of the sending with MPI Issend till
successful receipt verified by MPI Test), the message has to be retained in
a buffer, along with the corresponding MPI communication request-handle.
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Algorithm 2: Procedure for verifying receipt of buffered messages
and finding first empty slot in message buffer

Data: nbuffered: number of buffered messages to test.
MPI SendReqs(:): 1-d array storing the MPI communication
request-handles.
tbuffered(:)(double): 1-d array of time-stamps of buffered
messages

Result: lavail free slot(bool): true if there is an available slot in the
message buffer, false otherwise
idx first free slot(integer): the first free slot in the buffer (0
if no free slot exists).
updated tbuffered(:)

1 begin
2 Initialize lavail free slot = false;
3 Initialize idx first free slot = 0;
4 for imessage = 1, nbuffered do
5 Set message sent = false ;

// If tbuffered (imessage) =∞, either the slot imessage in

the buffer has not yet been filled with a

message or the receipt of a previously buffered

message in this slot was verified, and the

time-stamp was reset to ∞. Otherwise:

6 if tbuffered (imessage) <∞ then
7 call MPI Test(MPI SendReqs(imessage), message sent) ;
8 if message sent then
9 tbuffered (imessage) =∞ ;

10 if ¬ lavail free slot then
11 lavail free slot = true;
12 idx first free slot = imessage;

13 end

14 end

15 end

16 end

17 end
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Algorithm 3: Procedure for buffering a message and initiating a
send request

Data: M (message data-structure of table 1): the message to be sent
nbuffered (integer): the number of send-message requests stored in
the buffer (up to nmaxbuffered, which is the buffer size).
MPI SendBuffer(:,:): the buffer (2-d array) of messages
MPI SendReqs(:): 1-d array storing MPI communication
request-handles
tbuffered(:)(double): 1-d array containing time-stamps of buffered
messages
messgQueue (doubly linked list): priority-sorted queue of messages

Result: updated nbuffered, nmaxbuffered, MPI SendBuffer, MPI SendReqs,
tbuffered, messgQueue

1 begin
// Expression "M.sign" is true for message, false for

anti-message

2 if M.sign then
3 Insert the message in sender PE messgQueue ; // in case a

corresponding anti-message needs to be sent later

upon a roll-back.

4 end
5 Execute Algorithm 2; // returns lavail free slot = true if

the buffer has free slots and idx first free slot as the

index of the first free slot

6 if ¬ lavail free slot then
7 if nbuffered == nmaxbuffered then
8 Increase the size of buffer arrays by 100 elements;

update nmaxbuffered; // memory amortization

9 end
10 nbuffered = nbuffered + 1;
11 idx first free slot = nbuffered;

12 end
13 Update array element tbuffered(idx first free slot) with the time-stamp

of the message ;
14 Copy message to buffer slot MPI SendBuffer(:,idx first free slot)

using a sequence of calls to MPI Pack ;
15 Call MPI Issend with buffer-slot

MPI SendBuffer(:,idx first free slot); store the returned
request-handle into MPI SendReqs(idx first free slot) ;

16 end
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To this end, buffered messages are stored in a two-dimensional array,
MPI SendBuffer, of size MessageSize × nmaxbuffered, which is complemented by
two additional one-dimensional arrays, MPI SendReqs and tbuffered with size
nmaxbuffered. The latter variable denotes the maximum number of messages that
can be buffered at a given time, while MPI SendBuffer corresponds to the
maximum memory that any message would need, which scales with the max-
imum length of the reaction patterns. Array MPI SendReqs contains the
MPI communication request-handles, while tbuffered contains the time-stamps
of the buffered messages.

The latter array is useful for checking quickly if a buffer slot is empty.
Thus, the elements of tbuffered, are initialized to ∞, and whenever a mes-
sage is buffered to MPI SendBuffer(:, imessage), the corresponding element
tbuffered (imessage) is updated with the message’s time-stamp (line 13 of Algo-
rithm 3). At any later point, if MPI Test returns true for the request-handle
MPI SendReqs(imessage), i.e. successful receipt, the corresponding timestamp
tbuffered (imessage) is reset to ∞ (lines 6-15 of Algorithm 2). Consequently, at
any point in the KMC simulation, tbuffered (imessage) =∞ means that the cor-
responding elements MPI SendBuffer(:, imessage) and MPI SendReqs(imessage)
are free to be used for a new communication request. The aforementioned ar-
rays (MPI SendBuffer, MPI SendReqs and tbuffered) are memory-amortized,
i.e. their sizes can be increased on the fly, as necessary. In our implemen-
tation we increase the size of the buffer arrays by 100 elements when they
get filled-up (lines 7-9 of Algorithm 3); other strategies are also possible, e.g.
increasing the size by a multiplicative factor.

Hence, whenever a PE needs to send a message (or anti-message) to any
of its neighboring PEs, it invokes Algorithm 3. First the sign of the message
is checked and if this is positive, i.e. the PE is sending a message and not an
anti-message, the message is stored in the messgQueue (section 2.4) based
on its priority (anti-messages on the other hand, annihilate existing messages
but are not stored; this is discussed in subsequent sections). Then, Algorithm
2 is invoked, which loops over the first nbuffered messages and checks which, if
any, have been received, thereby opening a buffer slot. If available, the first
of these slots is passed onto Algorithm 3, otherwise slot nbuffered + 1 is used
(of course Algorithm 3 checks if the buffers are full on line 7, and allocates
more space if needed). In the end, the message is copied in the buffer arrays
and the send request is initiated with MPI Issend (line 15).

Having discussed the procedures invoked by a sender PE, we now con-
tinue to describe what happens on the receiving end. Thus, in every itera-
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tion of the KMC loop, Algorithm 4 is invoked, by which PEs first probe for
new messages using MPI Iprobe and, if there are any, they receive them
with MPI Recv (lines 4 and 6 in Algorithm 4). Note that MPI Recv is a
blocking subroutine, which, however, is called only if there are new messages,
thereby avoiding deadlocks. The received messages are unpacked using a se-
quence of MPI Unpack calls invoked in line 7 of Algorithm 4 and handled
as necessary: messages are stored in messgQueue, while anti-messages anni-
hilate existing messages therein. The minimum value among the time-stamps
of all received messages is stored in tminreceived (line 13 in Algorithm 4; note that
tminreceived is reset to ∞ at the beginning of Algorithm 4 in line 2).

The value of the latter variable is critical in detecting potential causality
violations. Therefore, in an iteration of the KMC loop, there are two possi-
bilities for the relation between KMC time of a process (tKMC) and tminreceived.
The first possibility is tminreceived > tKMC, whereby all received messages in the
current iteration are in the PE’s future. In this case, there is nothing further
to be done by the receiver PE at this point. All the received messages are
already inserted in messgQueue based on their priority. The second possibil-
ity is tminreceived ≤ tKMC, whereby at least one received message in the current
iteration is in the PE’s past. This constitutes a causality violation. Received
messages that are in the past are referred to as stragglers [62], and the strag-
gler with the highest priority (lowest time-stamp, tminreceived) is referred to as
the priority-straggler.

Resolving a causality violation entails discarding the “wrong” history
and restoring an earlier KMC state whose KMC time is before the time-
stamp of the priority-straggler. Thus, the simulation effectively “goes back
in time”. Then, re-simulating the KMC trajectory considering the newly
received straggler messages would be relatively straightforward, since these
messages are now in the “future”. Of course, one has to be careful to send
anti-messages as appropriate to other PEs, in order to “undo” messaged
events that fall within the discarded history. The pertinent procedures are
discussed in detail in the next section.
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Algorithm 4: Procedure for probing for and receiving incoming
messages

Data: messgQueue (doubly linked list): queue containing messages
Result: tminreceived (double)

updated messgQueue
1 begin
2 Initialize tminreceived =∞; lreceive = true;
3 while lreceive do
4 call MPI Iprobe(. . . , lreceive); // check for incoming

message

5 if ¬ lreceive then exit while loop;
6 call MPI Recv(. . . ) to receive incoming message (or

anti-message) M ;
7 Retrieve message data with a sequence of calls to

MPI Unpack(. . . );
8 if M.sign then
9 Insert the received message M in the messgQueue;

10 else
11 Find and delete the message corresponding to the received

anti-message M ;

12 end
// tmessage is the time-stamp of the received message

(or anti-message)

13 if tmessage < tminreceived then tminreceived = tmessage ;

14 end

15 end
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Algorithm 5: Procedure to check if there is a causality viola-
tion, and, if so, perform roll-back and prepare/update for rollback-
propagation mode.

Data: tKMC (double): current KMC time
tfinal
KMC (double): user-specified final KMC time
tminreceived (double): minimum value among time-stamps of all
the received messages in the current iteration of the KMC
loop
rollback-propagation (bool): true if the PE is in
rollback-propagation mode, false otherwise
ttarget
rollback−propagation (double): the KMC time just before which

the rollback-propagation should terminate
stateQueue (doubly linked list): queue containing stored
KMC states

Result: updated tKMC, rollback-propagation, ttarget
rollback−propagation, and

stateQueue
1 begin
2 if tminreceived < tfinal

KMC then
3 if tminreceived ≤ tKMC then
4 Set rollback-propagation = true ;

5 Set ttarget
rollback−propagation = tminreceived;

6 Delete KMC states that have time-stamp greater than or
equal to tminreceived ;

7 Reinstate the KMC state from stateQueue that has
time-stamp less than and closest to tminreceived ;

8 else
9 if rollback-propagation ∧ tminreceived < ttarget

rollback−propagation then

ttarget
rollback−propagation = tminreceived;

10 end

11 end

12 end
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2.6. Resolving causality violations

Whenever a causality violation occurs, the KMC timeline of the PE from
tminreceived (the time-stamp of the priority-straggler) onwards is invalid, as the
PE had been unable to take into account the events of stragglers. To resolve
the causality violation, the timeline of events has to be re-winded (via a roll-
back procedure), to a time before tminreceived, and re-simulated while accounting
for the newly received messages. This is achieved by reinstating an old KMC
state from stateQueue that has time-stamp treinstate

state < tminreceived (we will refer
to this as a “safe” KMC state), and then performing rollback-propagation
from this new tKMC (= treinstate

state ) to just before tminreceived. Of course, the PE
performing the roll-back has to also send out anti-messages for each and every
previously sent message that has time-stamp greater than or equal to tminreceived.
These anti-messages ensure that other PEs make the necessary corrections to
their simulated histories, so that a globally consistent simulation is eventually
achieved.

2.6.1. State queue and the associated roll-back procedure

To be able to reinstate a safe KMC state when resolving causality vio-
lations, each PE maintains a time-sorted, or more generally priority-sorted,
state queue (stateQueue), into which KMC states are stored at regular in-
tervals, e.g. at every 1000 KMC steps. These intervals are adaptive and not
necessarily identical among PEs. Similar to the messgQueue, stateQueue is
also implemented as a doubly linked list. A node in the stateQueue holds all
the necessary information that is needed to repeat/resume the KMC simula-
tion from that earlier time point. This information includes data-structures
such as the lattice state, the process queue, the lists of on-lattice events and
lateral interaction patterns, but also the current positions (offsets) of output
files (since KMC output will also have to be rewound and re-written.

To treat a causality violation that resulted from a priority-straggler with
time-stamp tminreceived, the PE reinstates the KMC state with time-stamp treinstate

state

less than but also as close as possible to tminreceived. After this KMC state has
been reinstated, the KMC time is tKMC = treinstate

state . The PE subsequently
deletes the KMC states that have time-stamps greater than or equal to tminreceived

in order to free up the associated memory, as these states are no longer valid
in view of the causality violation in discussion. During the simulation, it is
very likely that the allocated memory for stateQueue gets filled up with the
saved KMC states, before any invalid states are deleted. In such a scenario,
every other element in stateQueue is deleted to free up memory for new KMC
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Figure 3: Procedures involved in resolving a causality violation. Pipelines represent
KMC time lines. Squares represent KMC state snapshots saved in stateQueue. A
circle with an inward arrow represents a received message (foreign-event), whereas
a circle with an outward arrow represents a sent message (boundary-event). More-
over, a dashed circle with an inward arrow represents a straggler (message with
timestamp in the past), while a circle with a double-arrow represents an anti-
message. All the messages are stored in the PE’s messgQueue. Finally, a dashed
pipeline represents rollback-propagation. (a) The PE receives two stragglers that
have time-stamps t7 and t8, and the straggler with the lowest time-stamp (t7)
is the priority-straggler. (b) The PE reinstates the KMC state that has time-
stamp t4(< t7), and initiates the rollback-propagation which is supposed to ter-
minate just before executing the priority-straggler (just before t7). (c) During the
rollback-propagation, the PE receives a new message that has time-stamp t6. As
tKMC < t6 < t7, the condition for the termination of ongoing rollback-propagation
is updated to just before t6. (d) During the rollback-propagation, the PE does not
send messages for the boundary-event with time-stamp t5, as it was already sent
out in the earlier normal-propagation (a). Once the rollback-propagation is fin-
ished, just before t6, the PE sends out anti-messages for each and every previously
sent messages that have time-stamp greater than t6. Here, the PE does this for
the message with time-stamp t9 (left panel) and then deletes this message from its
messgQueue (right panel).
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states (we thus “sparsify” the linked list). This way, there is always a safe
KMC state to roll-back to for any possible causality violation.

2.6.2. Rollback-propagation

After reinstating the safe KMC state, the PE enables rollback-propagation
mode, aiming at re-simulating the timeline between tKMC and ttarget

rollback−propagation

(see fig. 3b); ttarget
rollback−propagation is the time-stamp of the priority-straggler.

During rollback-propagation, the PE executes lattice events (thereby “prop-
agating the KMC state”) in almost exactly the same way as under “normal
propagation” mode. The only difference is that during rollback-propagation,
the PE does not send out messages, even if it executes boundary-events,
since the corresponding messages have already been sent out in the first-
ever “normal propagation” of the timeline. Rollback-propagation terminates
when the PE is about to execute the priority-straggler event, i.e. when
t+KMC ≥ ttarget

rollback−propagation, where t+KMC is the KMC time of the next lattice
event. It is important to note that during rollback-propagation, the PE
continues to probe for and receive messages in every iteration of the KMC
loop. In any iteration of the KMC loop in rollback-propagation, if tKMC <
tminreceived < ttarget

rollback propagation, the time before which rollback-propagation will

terminate is updated, ttarget
rollback propagation = tminreceived (line 9 in Algorithm 5; see

also fig. 3c).

2.6.3. Roll-back of Message queue and anti-messages

As discussed in the introductory paragraph of this section, already-sent
messages that have time-stamp greater than or equal to ttarget

rollback−propagation,
are no longer valid and the corresponding events need to be undone. To
this end, the PE traverses messgQueue, sends anti-messages for each and
every previously sent message that has become invalid, and deletes these
messages from messgQueue (fig. 3d). Communication of anti-messages is
similar to the communication of messages; after all, the same data-structure
(table 1) is used for both, with the only difference being the value of the “sign”
field thereof (true for message, false for anti-message). However, handling
these two entities differs: upon receipt of a message, a PE inserts it in its
messgQueue. On the contrary, upon receipt of an anti-message, a PE finds
and deletes the corresponding message from its messgQueue. Note that anti-
messages can also be stragglers and result in causality violations.

Schematics of the procedures involved in resolving causality violation from
the point of view of a single PE and multiple PEs are presented in fig. 3 and
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fig. 4, respectively. The pertinent algorithmic elements will be discussed later
in the context of the overall distributed KMC algorithm.

2.6.4. Roll-back of KMC output

In addition to rewinding the stateQueue and messgQueue, one also needs
to overwrite the content of output files that is no longer valid, i.e. any KMC
output that corresponds to time greater than equal to ttarget

rollback−propagation. To
achieve this, the output file positions are rewound/rolled-back to the posi-
tions stored as part of the KMC state snapshot corresponding to treinstate

state .
Thus, when restoring the earlier “safe” KMC state, the output files are repo-
sitioned, so that any new output overrides the invalid old output.

2.7. Global virtual time

As discussed in subsection 2.3, a message encoding a past event may result
in a cascade of causality violations, which, in the worst-case scenario, would
necessitate corrective actions by all PEs in the distributed simulation. At
any given moment during the simulation, the smallest possible time-stamp
for such a message is equal to the minimum KMC time among all PEs,
assuming of course that no other/previous messages are pending (the more
general case will be discussed shortly). Hence, any KMC states generated by
the simulation before that time are mutually consistent (thereby following
the statistics of the master equation) and will never be discarded during
a rollback. This observation leads naturally to the concept of the global
virtual time (GVT ), which serves as a measure of the progress of distributed
KMC runs, similar to the KMC time of a serial run. The GVT is useful
as a criterion for terminating the KMC simulation, but also for discarding
information that is no longer needed (i.e. KMC state snapshots or messages
pertinent to times earlier than the GVT value). Below we will discuss in more
detail these two points and their implementation in Time-Warp GT-KMC.

2.7.1. GVT computation and distributed run termination

The computation of the GVT accounts for the KMC times of all PEs but
also the timestamps of messages/anti-messages that are in transit i.e. mes-
sages that are buffered but not (yet) validated as received (see Algorithm
2 and pertinent discussion in section 2.5). Considering the latter is neces-
sary, since it is not known whether such messages have been acted upon yet,
thereby potentially setting the KMC time of a PE to an earlier time. Thus,
focusing on a single PE, the minimum among the time-stamps of buffered
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Figure 4: Schematic for different elements in resolving causality violations among multiple
PEs. Pipelines represent KMC timelines, and rectangles represent KMC states saved in
stateQueue. Circles with inward and outward arrows represent received and sent messages,
respectively. Circles with double-arrows represent anti-messages. Dashed-circles represent
stragglers. (a) PE-2 receives a (priority-)straggler with time-stamp t7, sent by PE-3, and
commits a causality violation, as the message is in its past. (b) PE-2 reinstates the first
state (t4) before the time of the priority-straggler (t7), and performs rollback propagation
that terminates just before t7. The PE(-2) also issues anti-messages to the previously
sent messages that have lower priority than the priority-straggler; messages with time-
stamps t8 and t10. (c) As PE-1 received anti-messages (that have time-stamps t8 and
t10) as stragglers in (b), it reinstates the KMC state that has time-stamp t6 and initiates
rollback-propagation that terminates just before t8 (time-stamp of the priority-straggler).
Note that PE-1 issues the necessary anti-messages (here for the message that has time-
stamp t9) after completing the rollback-propagation.

29



messages tbuffered(:) is evaluated and stored in tminbuffered. The two variables
just noted are local to a PE. The minimum among tKMC and tminbuffered is de-
fined as the local virtual time (LVT ) (line 7 in Algorithm 6). In turn, the
GVT is defined as the minimum among the LVT s of each and every PE in
the distributed run. Computing the GVT is thus a global operation and is
done at regular, pre-chosen, time intervals by invoking the MPI AllReduce
function (line 8 in Algorithm 6).

Algorithm 6: GVT (Global virtual time), “fossil collection” and
termination status of the distributed run
Data: τprev (double): clock time when the last GVT computation

was performed. At the beginning of the simulation, τprev is
initialized to zero.
∆τGVT (double): clock time interval for GVT computation,
as prescribed in the input.

Result: GVT (double), updated τprev (double) and tbuffered(:) (1-d
array of doubles)

1 begin
2 Call system clock function to obtain τcurr, the current clock time ;
3 Set ∆τ = τcurr − τprev ;
4 if ∆τ ≥ ∆τGVT then
5 Invoke Algorithm 2 to update the status of buffered messages;
6 Set tminbuffered = min(tbuffered(:));
7 Set LVT = min(tKMC, tminbuffered) ;
8 Perform a global communication by invoking

MPI AllReduce(LVT ) to obtain GVT = min(LVT ) ;
9 Set τprev = τcurr ;

10 if GV T ≥ tfinal
KMC then exit main KMC loop and terminate

distributed run;
11 Delete obsolete KMC states from stateQueue;
12 Delete obsolete messages from messgQueue;

13 end

14 end
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As mentioned earlier, calculating the GVT is useful for terminating the
distributed KMC run. In general, terminating distributed simulations can
be complicated [63], contrary to sequential runs. Thus, in a sequential KMC
run, the termination criterion is straightforward: reaching the specified max-
imum KMC time marks the end of the simulation. In a distributed run,
termination detection must be a global process similarly to how the GVT is
computed. Thus, given the desired final KMC time, tfinal

KMC, the distributed
run is terminated when GVT is greater than tfinal

KMC (line 10 in Algorithm 6).
In a distributed run, it may happen that one or more PEs reach the specified
maximum KMC time and appear to have terminated locally. However, other
PEs may have not finished yet, and therefore the run should not be termi-
nated globally. In this case, the PEs that have terminated locally continue
iterating within the main KMC loop but only for the purposes of probing for
and receiving any messages, and also making sure all the buffered messages
are sent (line 9 in Algorithm 7). It is critical that these PEs do not exit
the main KMC loop, because it is certainly possible that they will receive
a message with time-stamp less than tfinal

KMC, thereby committing a causality
violation and having to roll-back.

2.7.2. Recovery of memory by deleting obsolete KMC states and messages

Since the GVT is the minimum of the LVT s of all PEs, it is guaranteed
that a priority-straggler (message or anti-message) will not have time-stamp
strictly less than GVT (note that it is still possible for the time-stamp to
be equal to GVT and lead to a causality violation). Consequently, in state-
Queue one needs to retain only the last KMC state before the GVT, whose
timestamp will be denoted with tGVT−

state , and of course all subsequent states.
On the other hand, any state with time-stamp less than tGVT−

state can be safely
discarded to free up the associated memory (line 11 in Algorithm 6).

Similarly, no longer needed messages can be deleted as well, to free up
memory (line 12 in Algorithm 6). Such obsolete messages have time-stamp
less than tGVT−

state , since, if the last KMC state just before GVT is restored, one
will need all messages received from tGVT−

state onward, to correctly resimulate
the timeline upon rollback-propagation. The process of recovering memory
by deleting the obsolete KMC states and messages is referred to as “fossil
collection” [62].
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Algorithm 7: Distributed KMC algorithm (executed by each PE)

Data: Lattice, energetic clusters/figures, reaction mechanism, and simulation
conditions, such as temperature, pressure and gas phase mole-fractions.

Result: A trajectory of lattice states.
1 begin
2 Initialize GlobClusterEnerList and add all domain instances of energetic

patterns to the list;
3 Initialize procQueue with all possible domain processes along with their

random occurrence times;
4 Initialize rollback-propagation = false ;
5 while True do
6 Invoke Algorithm 4 to probe for and receive incoming messages;
7 Invoke Algorithm 5 to check for causality violation and act accordingly,

or update the information for rollback-propagation, if necessary ;
8 Invoke Algorithm 6 to compute GVT and decide on run termination ;

9 if tKMC ≥ tfinal
KMC then cycle ;

10 if rollback-propagation ∧ t+KMC ≥ ttarget
rollback−propagation then

11 Set rollback-propagation = false ;
12 Issue anti-messages for each and every previously sent message that

has time-stamp greater than or equal to ttarget
rollback−propagation ;

13 end
14 Obtain the most imminent event Enext among procQueue and

messgQueue;
15 if ¬ rollback-propagation then
16 if Enext is foreign-event and is not feasible then cycle;
17 Set boundary-event = false ;
18 if Enext is from procQueue and involves at least one halo-site then

set boundary-event = true ;
19 Store a KMC state snapshot in stateQueue, if timely ;

20 end
21 Execute the most imminent event;
22 if ¬ rollback-propagation ∧ boundary-event then invoke Algorithm 3

for every PE that has a halo-site affected ;
23 Execute steps 7-21 of Algorithm 1 ; // update operations for the

assigned domain as per the sequential KMC algorithm

24 end

25 end
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Due the requirement to save simulation states, the Time-Warp algorithm
can be quite memory intensive. Thus, freeing up memory after every GVT
computation block is critical. Note, however, that, in our implementation,
GVT computation is achieved through global communication, which can
limit the performance if invoked very frequently, especially if the number of
PEs is large (for alternative approaches see e.g. Mattern [64]). The choice
of the frequency of GVT computation, evidently, is an optimization problem
and further investigations on this topic will be part of our future work. In
the current implementation, a clock time interval is prescribed as part of the
simulation input and GVT computation is invoked at regular such intervals.

2.8. Distributed KMC algorithm

The distributed KMC driver is summarized in Algorithm 7, which has
been implemented in Zacros and makes use of the Time-Warp algorithm pro-
tocols previously discussed. An additional important technical point pertains
to the feasibility check for the most imminent event (line 16). In a sequential
run, the PE never encounters a situation where an imminent event is infea-
sible. However, in a distributed run, it is possible that the most imminent
event is a foreign-event E2 that could depend on another foreign-event E1,
but the corresponding message of E1 may have not yet been received by the
PE. In this case, the most imminent event (E2) is infeasible and prevents the
PE from progressing forward. It is important to note that this is only a tem-
porary setback (the Time-Warp algorithm by conception prevents deadlocks
[43]). To address it, the PE cycles the KMC loop keeping the KMC state
“as is” until the infeasibility is resolved (line 16 in Algorithm 7). The situa-
tion gets resolved in two possible ways, either by receiving a message for the
foreign-event E1 which has higher priority than the infeasible foreign-event,
or by receiving an anti-message for the infeasible foreign-event (E2).

As an example, let us consider the following scenario to demonstrate how

event infeasibility may arise. The scenario involves events on sites 15 and

21 , which are shared by all four PEs (see fig. 2). Initially, site 21 is

occupied with a mono-dentate adsorbate and all other sites, including 15 ,
are empty. PE-2 executes a diffusional hopping of the adsorbate from site

21 to site 15 , and, as this is a boundary-event, communicates the event
as a message to each of the other PEs. The order by which the other PEs
receive these messages is unknown. It is thus possible that PE-0 receives the
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corresponding message first and executes a consequent event, desorption of

the adsorbate from site 15 . Clearly, PE-0 has to communicate the desorp-

tion event just executed to all other PEs since site 15 is in their halos. It is
now possible that PE-1 receives the message about the desorption from PE-0
before receiving the message about the diffusion from PE-2. In this case, the
foreign-event that PE-1 would try to execute next (the desorption) is infea-

sible, as there is no adsorbate on site 15 yet. PE-1 will have to continue
iterating the KMC loop until it receives the message about the diffusion from
PE-2, so as to resolve the infeasibility problem.

2.9. Parallel-emulation

Implementing the Time-Warp algorithm to enable distributed paralleliza-
tion of GT-KM is not trivial and, thus, validation is essential to ensure cor-
rectness. Such a validation approach can be based on the following constraint
inherent to the Time-Warp algorithm: “if event A has higher priority1 rela-
tive to event B, event A should be scheduled and executed before event B”
(“before” in this context is meant in real/clock time terms). This constraint
can be used to devise a “parallel-emulation” scheme, by which sequential (se-
rial) KMC runs generate output identical to that of distributed runs, without
the use any of the Time-Warp algorithm protocols. Validating the correctness
of distributed runs can then be done in a straightforward way by comparing
their results with those obtained from the corresponding parallel-emulation
runs.

Thus, a “parallel-emulation” run is a serial KMC run which uses exactly
the same random numbers as the distributed run, and of course, in the same
order. To achieve this, the following algorithmic elements are needed: (1)
a set of NP random stream instances (objects) that are identical to those
used by the NP PEs in the distributed run (as one stream is used for each
domain); (2) a function that returns the domain to which a lattice event

1In our discussion, priority is determined on the basis of the timestamp of an event. It
is possible (though quite infrequent in practice) that two events have equal timestamps,
in which case, additional priority rules have to be imposed in order to ensure the seamless
operation of the Time-Warp implementation. These rules are discussed in detail in the
Supplementary Information and are adopted in our Time-Warp implementation. It is
possible to also implement them in the parallel-emulation scheme; however, given that
equal-timestamp events are rare, we chose to keep the latter as simple as possible.
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“belongs”. This “domain of ownership” is unambiguously determined, simply
by inspecting the lattice site onto which the first site of the reaction pattern
has been mapped. Recall that in a parallel run, an MPI process adds a
detected lattice event to its ProcQueue only if the site 1 of the pattern is
mapped to a domain-site. This rule can be easily embedded into the function
in discussion, without the need for the serial run to actually perform the
domain decomposition.

Within this framework of the parallel-emulation run, whenever a new
event is identified, the algorithm first determines the domain to which the
event belongs and then uses the corresponding random number stream when
generating the KMC time of occurrence for that event. Additionally, for
simulations with lateral interactions between adsorbates, the correct random
number has to be chosen whenever a time of occurrence is updated (recall
that in GT-KMC such updates are needed for any event affected by changes
in the neighboring spectators due to the lattice event just executed [37]).
Thus, a parallel-emulation run is essentially a serial run, with a slightly
modified procedure for random number generation. In such a run, there are
no communications, causality violations, or roll-backs, and none of the Time-
Warp specific data-structures (e.g. messgQueue, stateQueue), or procedures
(e.g. GVT computation) are used.

Of course, such runs are expected to be quite intensive for large lattices,
since data and workload are no longer distributed among several PEs. In
addition, parallel-emulation runs are slightly less efficient than “traditional”
serial runs, due to small memory overheads in maintaining several random
streams and computational overheads in selecting the appropriate random
number out of these. Hence, the parallel-emulation scheme is only used
for validating distributed runs by eliminating the underlying complexity of
Time-Warp.

3. Results and Discussion

We proceed to discuss the validation and performance benchmarks of our
implementation of the Time-Warp GT-KMC approach. The latter has been
incorporated into Zacros [18, 37, 38], our FORTRAN 2003 code for KMC
simulations in catalysis and surface science. For validation and benchmarking
we have employed two simple models (systems 1, 2), both simulated on square
lattices with one site per unit cell (similar to those of fig. 1 and fig. 2), while
for demonstrating our implementation on a more realistic system, we have
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kads/des kdiff εsite εCO∗

(s−1) (s−1) (eV) (eV)

1.0 10.0 0.0 0.1

Table 2: Rate constants of elementary events, CO∗ adsorption, CO∗ desorption and CO∗

diffusion. Interaction of CO∗ with the bound-site (εsite) and lateral interaction between
adsorbed CO∗ molecules (εCO∗) are also given. Note that CO∗ diffusion is exclusive to
system 1 and lateral CO∗-CO∗ interactions are exclusive to system 2. Simulations are run
at a temperature of 500 K and pressure of 1 bar.

chosen a detailed model of CO oxidation on Pd(111) (system 3, taken from
Ref. [65]). A brief description of the main features of these systems is
provided below.

• System 1 entails CO adsorption, CO∗ desorption, and CO∗ diffusion,
without lateral interactions.

• System 2 entails CO adsorption and CO∗ desorption, with nearest-
neighbor lateral interactions among CO∗.

All events in these two systems are taken as reversible and can be summarized
by the following “reactions”, in which ∗ refers to a vacant site, subscript (g)
denotes a gas species, and superscript ∗ denotes a surface species:

CO(g) + ∗
kads−−⇀↽−−
kdes

CO∗ (3)

CO∗ + ∗
kdiff−−⇀↽−−
kdiff

∗+ CO∗ (4)

The aforementioned two systems were chosen such that inter-domain cou-
pling arises from different factors. In system 1, adsorption/desorption and
diffusion are considered in an ideal adlayer (no lateral interactions), and do-
main dynamics are coupled via diffusion, which results in particles crossing
domain-boundaries. On the other hand, system 2 involves only single site
events (adsorption/desorption), but entails coupling due to pairwise lateral
interactions, which may result in a particle of one domain affecting the des-
orption rate of a particle in another domain. The values of the parameters
used in the benchmark simulations are given in table 2.
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• System 3 entails 22 elementary events capturing CO oxidation dy-
namics on a Pd(111) lattice with two site types (fcc and hcp). The
lattice size was kept fixed to 2,592×2,592 unit cells with two sites each
(13,436,928 sites in total).

More details on this system can be found in our previous publications [65,
66, 67]. Briefly, the elementary events include the adsorption, desorption and
diffusion of CO and O2, the dissociation of O2 and the diffusion of the result-
ing O∗ adatoms, as well as the reaction of CO∗ with O∗ towards CO2. All
events include variants as appropriate, as they can occur on the two different
site types. Lateral interactions are captured by a cluster expansion with 88
patterns, including single-, two- and three-body patterns. The maximum
reaction pattern “depth” is 3 sites (for O2 dissociation on an fcc site, which
gives rise to two O∗ on hcp sites; a similar event exists for O2 dissociation on
an hcp site). Moreover, the maximum energetic interaction pattern “depth”
is also 3 sites, due to the inclusion of 3-body patterns. These depths and the
connectivity of the sites result in a halo width of 4 unit cells.

The parameters of the cluster expansion are as of model 2 of fig. 8 in Ref.
[65], for a temperature of 440 K and a pressure of 10−6 bar (fourth point
from the left in the blue curve of the figure just noted). This model was
one of the variants developed as part of a sensitivity analysis study in Ref.
[65] and incorporates: adsorption stabilization for CO of 0.2 eV as suggested
by experiments and RPA calculations (i.e. Eads = −1.5276 eV on the fcc
site and −1.5047 eV on the hcp), adsorption stabilization for O2 of 0.3 eV
(i.e. Eads = −0.9712 eV on the fcc site and −0.8256 on the hcp site), and
an activation energy for O2 dissociation lowered by 0.2 eV (i.e. 0.59 eV and
0.45 eV, for dissociation on fcc and hcp sites, respectively).
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3.1. Validation of the Time-Warp algorithm implementation

Our Time-Warp GT-KMC implementation is validated against parallel-
emulation runs, as described in section 2.9. Thus, a correct implementation
of the Time-Warp algorithm is expected to deliver KMC trajectories that
are in exact agreement (down to the stochastic fluctuations) with the results
from the corresponding parallel-emulation runs. The results of the validation
runs are shown in fig. 5(a) for system 1 and fig. 5(b) for system 2.

The corresponding Time-Warp and parallel-emulation runs take place on
100 × 100 lattices, initialized with all sites vacant. For each such run, we plot
the coverage of CO∗ over time for tKMC ranging from 6 to 7 units of KMC
time (simulated seconds), so that we focus on the fluctuations. Clearly, for
both systems the distributed simulations produce identical results to those
obtained from the parallel-emulation scheme, thereby validating our imple-
mentation.
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Figure 5: CO∗ coverage profiles over time obtained from distributed runs that use the
Time-Warp algorithm versus the corresponding parallel-emulation runs. The coverage
is shown between KMC time of 6 and 7 simulated seconds to highlight the fluctuations.
Panels (a) and (b) show the results for systems 1 and 2, respectively. The identical profiles
obtained for each system provide evidence for the correctness of the Time-Warp GT-KMC
implementation.
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3.2. Performance benchmarks
Having validated our implementation, we now investigate the perfor-

mance thereof, in terms of both weak- and strong-scaling. All performance
benchmarks of systems 1 and 2 were carried out on the high performance
computing cluster Kathleen at UCL (https://www.rc.ucl.ac.uk/docs/
Clusters/Kathleen/), while for system 3, we made use of cluster Thomas
hosted by the Materials and Molecular Modelling (MMM) Hub (https:
//www.rc.ucl.ac.uk/docs/Clusters/Thomas/). As a raw metric of per-
formance we use the KMC-time advancement for a fixed real/clock-time
interval. It is therefore important to perform the simulations under sta-
tionary conditions, under which the average number of KMC events per unit
of KMC-time per lattice area remains constant. In this case, KMC-time ad-
vances (on average) linearly with respect to clock time, and, in the ideal case
of a trivially parallel KMC simulation (without halos), the pertinent “speed”
is inversely proportional to the number of sites in the lattice. These state-
ments will be expressed in quantitative terms later, when we define efficiency
factors; at this point our intention is to highlight the procedures adopted to
eliminate any bias in our investigations. Hence, in order to initialize our sim-
ulations from lattice configurations representative of the system’s behavior
in stationary conditions, a long KMC simulation is first run on a small size
lattice until stationary state is reached. The final state of the lattice is then
tessellated (tiled) as needed to generate initial state input for a larger lattice,
which is subsequently provided as the input state for the scaling benchmark
simulations.

There are three input parameters that allow us to tune the performance
of the distributed runs: the memory (per PE) available for saving KMC
states in stateQueue, the frequency of saving KMC states, and the clock-
time interval for GVT computation. Their values were chosen as shown in
table 3, in order to optimise performance while respecting the constraints of
the different systems and PE configurations. For example, for system 3 only
strong scaling benchmarks were possible due to the large lattice size and long
simulation times.

Thus, in both weak and strong scaling benchmarks, the memory allocated
exclusively for stateQueue is set to 4 GB for system 1, and 3.5 GB for system
2. For system 3, we performed only strong scaling benchmarks. Due to the
size of the lattice used in system 3 (2,592 × 2,592 unit cells, each with two
sites), the per-PE memory dedicated to stateQueue was more on configura-
tions with a small number of PEs. More specifically, we used 15 GB for the
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System Scaling MPI stateQueue State-saving GVT comp.
benchmark configuration(i) memory interval(ii) interval (s)

(GB) (#events)

1 Weak 1× 1 4.0 109 (iii) 5
2× 2− 30× 30 4.0 100 5

1 Strong 2× 2− 20× 20 4.0 100 5

2 Weak 1× 1 3.5 109 (iii) 3
2× 2− 30× 30 3.5 50 3

2 Strong 2× 2− 20× 20 3.5 50 3

3 Strong 2× 2 15.0 5 10
3× 3 8.0 5 10
4× 4 5.5 5 10

6× 6− 27× 27 4.5 5 10

Table 3: Settings of the Time-Warp based runs. Notes: (i) for strong scaling benchmarks,
the single-PE runs were serial (hence the absence of 1 × 1 MPI configurations). (ii) the
initial state-saving interval is reported. When the state queue gets completely filled, the
queue is sparsified and the state-saving interval is doubled (see section 2.6.1). (iii) this
setting effectively switches off snapshot saving, which is unnecessary for single-PE runs.

2×2 PE configuration, 8 GB for the 3×3, 5.5 GB for the 4×4 and 4.5 GB for
the rest of the PE configurations. Moreover, the GVT computation interval
is set to 5 seconds for system 1, 3 seconds for system 2, and 10 seconds for
system 3. Regarding the frequency of saving KMC states, we start with sav-
ing a state every 100 KMC steps in system 1, 50 steps in system 2, and 5 steps
in system 3. If stateQueue gets filled up before purging no-longer-needed or
invalid states, the queue is sparsified (see section 2.6.1)and the frequency is
halved, i.e. KMC states are saved every 200 KMC steps in system 1. This
adaptive procedure happens whenever needed in the distributed runs.

Note that these settings were chosen after a small number of (manual)
trials towards optimising the performance. A detailed assessment of the
effect of these parameters on performance is ongoing work, but out of scope
for this paper. Here, we aim at conducting proof-of-concept simulations,
to investigate the feasibility of Time-Warp GT-KMC for catalytic kinetics
studies.

In our discussion, we use the following definitions and notation. The
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scaled time (t∗) is defined as:

t∗ =
tKMC

tClock

(5)

where tKMC is the elapsed KMC time in a simulation that is run for tClock

clock time (this is what we referred to as the “speed” of the simulation in
the previous paragraph). t∗ (nsites : npe) is the scaled time from a distributed
run in which a lattice containing nsites sites is distributed over npe PEs. The
scaled time obtained from serial runs is represented as t∗ (nsites). Note that
t∗ (nsites : 1) represents the scaled time from a distributed run that uses only
one PE; this may include overheads compared to t∗ (nsites). The timing data
obtained from our benchmark simulations (discussed below) is provided in
the supplementary information.

3.2.1. Scaling behavior of serial runs

Before discussing the performance/efficiency of distributed runs that use
the Time-Warp algorithm, it is instructive to assess the performance of the
serial implementation, which is used as a basis for comparison. To this end,
serial runs are carried out for progressively larger lattices, and the measured
performance is compared against the ideal scaling law, whereby, in the ab-
sence of any overheads, the scaled time t∗ would be inversely proportional to
the number of sites in the lattice.

The pertinent results are shown in fig. 6d and fig. 6e. The red circles
show the efficiency of each serial run, defined as

η =
t∗ (nsites)

t∗ (nminsites)
(6)

with nminsites the number of sites in serial run with the smallest lattice (10,000
sites). The red lines highlight the ideal scaling, whereby η = nminsites/nsites. For
system 1 (fig. 6(d)), the performance follows the ideal scaling law for low to
moderately sized lattices containing up to ∼ 2× 105 sites; for lattices larger
than that, the performance starts to deteriorate. For system 2, the serial run
performance deviates from the ideal scaling already with lattices that contain
∼ 4× 104 sites. The worse performance of the serial algorithm for system 2,
compared to system 1, can be attributed to additional operations necessary
to compute the rate constants of events in the presence of lateral interactions.
More specifically, computing rate constants for desorption events necessitate
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(a) 1 × 1 (b) 2 × 2 (c) 3 × 3

Ideal scaling
Serial runs
Distributed runs

(d) System 1

Ideal scaling
Serial runs
Distributed runs

(e) System 2

Figure 6: (a-c): In the weak-scaling analysis the number of PEs is increased proportionally
to the lattice size, so that the workload per PE remains constant. (d, e): Weak-scaling
performance of the Time-Warp algorithm in Zacros for the two benchmark systems. For
the weak-scaling analysis, efficiency is calculated using eq. (7). Each subdomain assigned
to a PE contains 10, 000 sites.

the detection of lateral interaction patterns in the neighborhood of the event.
These detection operations entail solving the subgraph isomorphism problem
[18, 37] which introduces noticeable overheads for large systems (especially
since GT-KMC simulations need to frequently update the rate constants of
existing events in the presence lateral interactions).

3.2.2. Weak-scaling behavior

We continue our discussion with the weak-scaling benchmarks, in which
nsites and nPE are both increased proportionately, thereby maintaining a con-
stant workload per MPI-process (recall that the workload scales linearly with
the number of domain-sites, in the absence of computational overheads). For
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these benchmarks we define the efficiency (ηws) as follows:

ηws =
t∗ (nsites : nPE)

t∗ (nminsites)
(7)

with the total number of lattice sites being nsites = nminsites × nPE as portrayed
in fig. 6a - 6c, and as before, nminsites denotes the number of lattice sites in
the serial run with the smallest lattice. In the ideal case (trivially paral-
lel problem), the efficiency would be equal to one, since t∗ (nsites : nPE) =
t∗ (nminsites × nPE : nPE) = t∗ (nminsites : 1).

The results of our weak scaling benchmarks are shown in fig. 6d and fig. 6e.
Let us first compare the single-PE distributed run with serial run (leftmost
points for 104 sites in the plots just noted). In the distributed runs with just
a single PE, none of the following occurs: point-to-point communications via
messages, causality violations, rollback propagation. We have therefore sup-
pressed the handling of stateQueue by choosing a very large interval for state
saving (every 1 billion events). However, the algorithm still checks at every
KMC iteration whether an event involves halo sites (even though there are
none in this case). In addition, MPI subroutines that e.g. probe for messages
(even though there wouldn’t be any), or broadcast the LVT (to just one MPI
process) are still called as usual. The pertinent overheads can be assessed by
calculating the quantity: t∗ (nminsites : 1)/t∗ (nminsites), and our results reveal that
such overheads result in a 30 − 40% slowdown when comparing truly-serial
runs with single-PE distributed ones (see fig. 6). Of course, simulations of
the latter type are not useful in practice and adopting them for production
runs would be ill-advised. It is relatively straightforward to improve our
implementation by skipping the aforementioned operations when only one
PE is used; still though, single-PE runs like the ones we just discussed, are
quite useful for benchmarking purposes, as they can reveal time-consuming
operations.

The smallest actually distributed simulations are performed for 4 PEs
(40,000 sites), as shown in fig. 6d and fig. 6e, for systems 1 and 2, respectively.
The observed drop in efficiency for these relative to the respective serial runs
for 40,000 sites can be attributed mainly to the emergence of communica-
tions, the handling of messgQueue and stateQueue, and the treatment of
causality violations via rollbacks. The latter are indeed quite costly, as they
entail discarding “chunks” of KMC trajectories, which were obtained by con-
suming computational resources. It is however encouraging to see that the
performance stabilizes for larger lattices (fig. 6), for which the serial runs are
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becoming progressively more inefficient. For the largest lattices investigated,
we see that the distributed runs are more than 10 times faster for system 1
compared to serial runs. For system 2, the difference is much higher, with
the distributed runs being more than four orders of magnitude faster than
serial ones. The better performance observed for this system could be at-
tributed to the fact that updates to reaction rates due to lateral interactions
are done as part of the execution of any event, and are decoupled from any
Time-Warp related operations. Thus, they are parallelized quite effectively
via the domain decomposition scheme of our implementation. These results
highlight the potential of the Time-Warp GT-KMC implementation to be
used in studies of large lattices, which exceed current capabilities.

3.3. Strong-scaling behavior

Contrary to the weak-scaling benchmarks, in which the size of the prob-
lem increases in proportion to the computational resources, when analysing
strong-scaling, the size of the problem remains fixed. Thus, to assess the
strong-scaling performance of our Time-Warp GT-KMC implementation we
increase nPE for a fixed value of nsites (see fig. 7a-7c), thereby, decreasing the
workload per PE. For the strong-scaling benchmarks, the efficiency (ηss) is
defined with respect to a serial run, as follows:

ηss =
t∗ (nsites : nPE)

t∗ (nsites)
(8)

The results of these benchmarks for systems 1 and 2, are displayed in
fig. 7. For actually distributed runs (i.e. with more than just one PE), we
generally observe an improvement in performance as more PEs (nPE) are
employed in our simulations. The number of PEs for which a distributed run
starts to outperform the single-PE run depends on the system and the lattice
size (having fixed the allocated memory for the stateQueue, the frequency of
state-saving, and the specified time interval for GVT computation). For
example, distributed runs with more than 100 PEs outperform single-PE
run for all lattices of system 1, while for system 2, runs with 9 PEs already
outperform the single-PE runs quite significantly.

In our strong scaling benchmarks, we also observe that the efficiency
plateaus for the smallest lattice considered (360 × 360). This plateau is
due to the increasing portion of halo sites. Indeed, as the number of PEs
increases, the overall length of boundaries also increases, and so does the
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(a) 1 × 1 (b) 2 × 2 (c) 3 × 3

(d) System 1 (e) System 2

Figure 7: (a-c): In the strong-scaling analysis the number of PEs is increased while keeping
the lattice size fixed, so that the workload per PE is progressively reduced. (d, e): Strong-
scaling performance of the Time-Warp algorithm in Zacros for systems 1 and 2. Plotted
is the efficiency calculated using eq. (8). Note that the left-most three points of panels
(d) and (e) overlap, since they correspond to serial runs for which the efficiency is one by
definition.

ratio between the number of sites that belong in halos over the total number
of sites. In turn, the probability that an event will involve at least one halo
site becomes higher, leading to inefficiencies due to causality violations and
the ensuing roll-backs. This issue is not observed for the two larger lattices
under consideration and the PE configurations investigated. However, it is
expected that the strong-scaling efficiency will go through a maximum in any
case, as the number of PEs is increased.

The scaling behavior is expected to be strongly affected by the amount
of memory available for stateQueue. For instance, this amount of memory
is fixed to 3.5 GB per PE for the 360 × 360 lattice (129,600 sites), for the
2 × 2 and the 4 × 4 PE configurations (4 versus 16 PEs). However, for
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(a) System 3 - performance benchmarks
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(b) System 3 - representative results

Figure 8: (a): Results of the strong-scaling benchmarks for system 3, the detailed CO
oxidation model of Ref. [65], on a 2,592×2,592 lattice (more than 13.4 million sites). The
efficiencies (blue squares) are calculated from eq. (8) and compared with the ideal scaling
(red line). The left-most point is a serial run for which the efficiency is 1 by definition.
(b): Representative results, in terms of the frequency of occurrence of the simulated
events. Plotted are the forward, reverse, net-forward and net-reverse frequencies per fcc
site. The net-forward frequency is the difference between forward and reverse frequency;
if that difference is negative, its absolute value is plotted as the net-reverse frequency. The
vertical dashed line corresponds to the (normalized) frequency of a single event.

smaller numbers of PEs, the larger domains handled would result in larger
memory requirements for saving each KMC state. For this reason, it is
possible that our benchmarks “favor” larger number of PE configurations, for
which stateQueue is able to store a larger number of KMC state snapshots. A
higher capacity for stateQueue enables “state-saving” at a higher frequency,
which, in turn, minimizes the time spent in performing rollback-propagation.
In fact, the best case scenario would be if one was able to store a KMC
state at every single KMC step, though this is clearly infeasible due to the
exceedingly high number of such steps for typical simulations. On the other
hand, it is important to point out that handling large memory allocations for
stateQueue, may also entail non-negligible overheads associated with reading
and writing KMC states.

Our last set of benchmarks, on the more realistic system 3 for CO oxida-
tion on Pd(111), are shown in fig. 8(a). We observe a steady rise in efficiency
with an increase in the number of PEs, though the speedup is sublinear.
Thus, if the efficiency is given as a power function of the number of PEs,
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ηSS = c · nαPE, the exponent α calculated from a least-squares fit is equal
to about 0.76 if the left-most point of the graph is neglected (for nPE = 1,
which is actually a serial run), while, if all points are included in the fit
α ≈ 0.74. Indicatively, for the largest simulation performed, which employed
27 × 27 = 729 PEs, we obtained a speedup by a factor of about 110. This
behavior is attributed to the large halo width of this system, which results
in frequent causality violations that have to be resolved with rollbacks.

Finally, in fig. 8(b) we show representative results on the normalized (per
cell, or per fcc site) frequency of occurrence of each elementary event included
in these CO oxidation simulations. These frequencies were calculated from
the aggregated number of events executed in all subdomains. We see that
adsorption, desorption and diffusion events appear quasi-equilibrated. A net-
forward frequency of about 4.6× 10−2 molecules · site−1· s−1 is observed for
CO oxidation on fcc sites, which is the dominant among the two CO oxidation
events. This value is in agreement with the previously reported frequency
for this model under the conditions chosen (see Ref. [65], fig. 8, model 2,
p = 10−6 bar, T = 440 K).

4. Summary and Conclusions

On-lattice KMC methodologies have attracted significant focus in the
computational catalysis field and have proven instrumental in unravelling
the complex dynamic behavior of heterogeneous catalysts [15, 16]. Still
though, elucidating challenging phenomena, such as catalyst reconstruction
and long-range pattern formation, necessitates accurate simulations at un-
precendented scales. Thus, motivated, we have successfully coupled the op-
timistic Time-Warp algorithm with the graph-theoretical KMC framework
and implemented the approach in Zacros, a general-purpose on-lattice KMC
code, in order to enable exact distributed KMC simulations.

The main challenge in such simulations relates to the sequential na-
ture of the KMC algorithm, whereby lattice events exhibit causal relations.
Hence, distributing the computational load among different processing el-
ements (CPU cores, MPI processes etc.) by decomposing the lattice into
subdomains is non-trivial. One is faced with the choice of either keeping PEs
synchronized, which makes it easy maintain causality but can be highly ineffi-
cient computationally, or perform the subdomain simulations asynchronously
but devise a way to correct any causality violations. The latter may arise
during the simulation if a processor receives, via a message from a neighbor,
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an instruction to perform an event in the past. Amending the simulation tra-
jectory entails rolling back to a time before the timestamp of this past event,
thereby discarding a recently simulated portion of the KMC trajectory, ex-
ecuting the event and simulating anew from that point onward. Of course,
this rollback may itself lead to additional violations of causality, since the
discarded KMC trajectory may include events that were messaged to other
processors. The purpose of the Time-Warp algorithm is to handle such cas-
cades of rollbacks via local operations, i.e. without the need for an “overseer”
or global controller.

Compared to the traditional sequential GT-KMC algorithm, [17, 18] the
distributed approach entails several additional operations, as part of the
Time-Warp algorithm embedded in our implementation: communication of
boundary-events (as messages or anti-messages, the latter encoding “undo-
actions”), saving of simulation states (to be restored later if/as needed),
saving of messages (in case anti-messages need to be sent later), re-winding
of the simulation to an earlier time (rollback), discarding of obsolete states
and messages (“fossil collection”), computation of the global virtual time
and collective termination of the distributed run. We have further devised
a computational scheme that can be applied to sequential GT-KMC runs,
enabling them to produce results identical to those of distributed runs. This
“parallel-emulation” scheme is based on a causality-related constraint inher-
ent in the Time-Warp algorithm and allowed us to validate the correctness
of our implementation.

To benchmark the performance of Time-Warp GT-KMC we have inves-
tigated both the weak- and strong-scaling, of our implementation for two
systems, for which inter-domain coupling arises due to different factors. The
scaling benchmarks on both systems reveal that the overhead associated with
Time-Warp-related procedures can be significant; however, the distributed
approach scales well with lattice size, and ends up outperforming apprecia-
bly the sequential KMC for sufficiently large lattices. For demonstration
purposes, we have also performed runs for the more realistic model of Ref.
[65], which captures CO oxidation dynamics on Pt(111). Our ongoing work
focuses on improving memory management, especially for handling the KMC
state queue, which exhibits the largest memory footprint among all datas-
tructures in our implementation. Another direction of interest pertains to
the computation of the global virtual time, and the decision variable for
collective termination. Both necessitate global communication, which may
adversely affect the performance of distributed runs with very large number
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of processors; thus, asynchronous approaches are being considered, such as
those by Mattern [64].

Overall, our Time-Warp GT-KMC implementation is quite promising and
will allow the catalysis and surface-science communities to study heteroge-
neous catalysts at spatial and temporal scales of unprecedented magnitude.
Crucially, the exact nature of the algorithm enables meaningful comparisons
with experiments to be performed, making it possible to test theoretical pre-
dictions and explain complex phenomena, such as long-range pattern forma-
tion due to catalyst reconstruction. Finally, our implementation is expected
to facilitate the benchmarking and further development of approximate algo-
rithms for distributed KMC simulation, in the context of practical catalysis
and surface-science problems.
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