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Abstract

We investigate the dynamics of a droplet on a planar substrate as the droplet vol-

ume changes dynamically due to liquid being pumped in or out through a pore. We

adopt a diffuse-interface formulation which is appropriately modified to account for a

localized inflow-outflow boundary condition (the pore) at the bottom of the droplet,

hence allowing to dynamically control its volume, as the droplet moves on a flat sub-

strate with a periodic chemical pattern. We find that the droplet undergoes a stick-slip
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motion as the volume is increased (fattening droplet) which can be monitored by track-

ing the droplet contact points. If we then switch over to outflow conditions (thinning

droplet) the droplet follows a different path (i.e. the distance of the droplet midpoint

from the pore location evolves differently) giving rise to a hysteretic behavior. By

means of geometrical arguments we are able to theoretically construct the full bifur-

cation diagram of the droplet equilibria (positions and droplet shapes) as the droplet

volume is changed, finding excellent agreement with time-dependent computations of

our diffuse-interface model.

Introduction

Droplet spreading and associated wetting phenomena are ubiquitous in a wide spectrum

of natural systems and technological applications, from the way rain droplets interact with

plant leaves and insects walking on water, to microchemical reactors, fluid transport pro-

cesses, materials processing and the rapidly growing field of micro- and nanofluidics, to

name but a few. In most cases, the substrates on which droplets spread are not smooth but

are characterized by various complexities such as chemical and/or topographical variations-

heterogeneities which can give rise to very rich dynamics characterized by, e.g., hysteresis

behavior and stick-slip motion.1–11 Examples of complex substrates also include the case

of a membrane or a porous medium, where, in addition to the intrinsic properties of the

material, one needs to take into account the fact that the volume of the droplet may vary in

time. In particular, an important feature here is that liquid can be absorbed or pumped in

through the membrane,12,13 i.e. the droplet may be fattening or thinning, something common

in e.g. polymer electrolyte membrane (PEM) fuel cells.14–17

In such cells, water is formed at a catalyst/membrane interface and is pushed through

porous electrodes into the gas flow channel. It has been observed (and explained through

the hydrophobicity of the porous material of the electrodes) that water droplets emerge from

the largest pores in the electrode gas diffusion layer (GDL) and grow in the main channel,

2



i.e. droplets experience a dynamic volume variation.16 The droplets will then detach and be

pushed by the gas flowing through the channel while remaining in contact with the GDL

porous surface. Ultimately, they need to be removed from the device to avoid issues such as

flooding. Once the droplets are created and grow into the main channel, they are constantly

in contact with a disordered substrate (i.e. the electrode GDL) which may affect the whole

process.

In addition to PEM fuel cells, droplets with time-dependent volume are found in many

other applications and natural systems, such as for example microemulsification, prob-

lems with non-equilibrium thermal effects, such as evaporation and condensation,7,18–24 and

chaotic behaviour such as drops in a dripping faucet,25,26 but also natural systems such as

droplet growth in speleothem drip sites.27 In addition to its significance in numerous ap-

plications in nature and technology, understanding the interplay between dynamic volume

variation and other parameters, e.g. the substrate chemical properties and geometry, is one

of the basic questions that must be addressed from the fundamental fluid dynamics point of

view.

Here we investigate a simple prototype system, a two-dimensional (2D) droplet sitting on

a horizontal substrate with a small pore from which liquid can be pumped in or out of the

droplet; we have already referred to it as a fattening or thinning droplet, respectively. To this

end, we adopt a diffuse-interface Cahn-Hilliard model (see e.g. Refs. 8) that incorporates

an extra boundary condition (BC) which allows us to impose either a positive (inflow) or

negative (outflow) constant liquid flux into the droplet at a pore, hence allowing us to

dynamically control its volume. As far as the solid substrate is concerned, we consider

a topographically smooth substrate but with a chemical heterogeneity that consists of a

spatially periodic chemical pattern, i.e. the local equilibrium contact angle varies periodically

along the substrate.

The problem of dynamic droplet volume variation has received some attention over the

last few decades, both experimentally28–30 and analytically-computationally,31–34 however, it
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is still unclear how the dynamics of the droplet itself, as its volume increases or decreases in

time, is affected by the properties of the solid substrate. As far as the influence of chemically

heterogeneous substrates is concerned, we note the study in Ref. 32 of a 2D droplet on a

horizontal chemical heterogeneous substrate, but without inflow-outflow as we do here, and

where bifurcation diagrams for the droplet half-width/radius and contact angle as a function

of volume were given, pointing also to the possibility of contact angle hysteresis. However,

the volume was not changed dynamically as in our study; instead it was considered as a

varying parameter in an equation governing droplet equilibrium, and as such Ref. 32 was

restricted to equilibrium only. Moreover, the analysis in Ref. 32 considered only the case in

which the droplet is kept fixed at a specific point on the surface, hence not allowing for any

possible horizontal motion of the droplet. In this sense, the bifurcation diagram we present

here is more complete as we explore all the relevant variables of the problem.

We revisit the bifurcation diagram presented in Ref. 32 and perform a detailed and

systematic parametric study of the slow dynamics of the droplet. It is important to note

that under these conditions, the droplet never detaches from the pore. By making use

of elements from dynamical systems theory we fully rationalize all bifurcations and the

stability of the different solution branches as the volume dynamically varies. We argue that,

in addition to the droplet volume which is the bifurcation parameter, the other pertinent

variables are the droplet shift, a measure of the distance the droplet midpoint is displaced

with respect to a reference point along the substrate, and the droplet half-width, a measure

of the droplet radius, so that the bifurcation diagrams for the equilibrium solutions are in

fact three dimensional (3D).

We demonstrate that the droplet exhibits stick-slip dynamics as the volume is increased

(inflow conditions) which we monitor by recording the droplet shift. When we switch over to

outflow conditions, i.e. the volume decreases, the droplet exhibits again stick-slip motion but

it now follows a different path giving rise to hysteresis behavior. Hence, a simple prototypical

chemically heterogeneous substrate can induce complex droplet dynamics.
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Figure 1: (a) Problem setup: a 2D droplet lies on a topographically flat but chemically het-
erogeneous substrate with the chemical heterogeneity described by the function Θ(x) (bottom
panel). An inflow-outflow BC is imposed near the origin of the system and it is depicted
as a blue patch. The position of the gas-liquid interface corresponds to a dynamic snapshot
obtained with the diffuse-interface formulation described in the text. (b) Alternative types
of periodic chemical heterogeneities considered in this study.

Problem formulation and theoretical framework

Our setup consists of a 2D droplet moving on a flat substrate which has been chemically

altered so that its wetting properties vary periodically along the substrate. Hence, the

equilibrium contact angle, which is defined as the angle between the liquid-gas interface and

the wetted area of the substrate, is taken to vary periodically along the substrate. In the

simplest case the equilibrium contact angle is prescribed by the spatially oscillatory function:

Θ(x) = θ0 + σ cos (2πx/λ), (1)

where θ0 is the equilibrium contact angle for the homogeneous substrate, and σ and λ repre-

sent the intensity and wavelength of the disorder variation, respectively. We are interested in

studying the dynamic properties of the droplet as its volume is increased (fattening droplet)
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or decreased (thinning droplet) and so we impose a BC on the substrate through which liquid

can be pumped in or out of the droplet.

Let x1 and x2 denote the position of the left and right contact points of the droplet,

respectively, and h(x, t) the liquid-gas interface position. To interrogate the droplet dy-

namics we then monitor different dynamic quantities describing the droplet as the volume

V (t) =
∫ x2

x1
h(x, t)dx varies in time, namely the droplet shift, ` = [x1(t) + x2(t)]/2, which

measures the distance the droplet midpoint is displaced from x = 0, the droplet half-width,

d(t) = [x2(t)− x1(t)]/2, measuring the droplet radius and the contact angles θ1(t) and θ2(t),

corresponding to the left and right contact points, respectively. Figure 1(a) shows a compu-

tational result, obtained with the methodology described below together with the definition

of all relevant quantities, and Figure 1(b) shows two additional examples of periodic chemical

heterogeneities considered in this work, namely a striped version of eq 1,

Θ(x) = θ0 + σ tanh [λt cos (2πx/λ)], (2)

where λt is an additional parameter controlling the steepness of the chemical variation, and

a multiscale version of eq 1 (bottom panel):

Θ(x) = θ0 + σ sin (2πx/λ) + σ2 sin [2πx/(ελ)], (3)

where ε� 1 is a small parameter.

Equilibrium properties

In the absence of any overhead gas flow and for a constant volume V =
∫ x2

x1
h0(x)dx, we

have that, at equilibrium, the contact angles for a 2D system need be equal to each other,35

i.e. θ1 = θ2 = θ.

In addition, in the absence of gravity the free surface is given by a circular arc which

is uniquely determined by the contact angle θ and the droplet half-width d. Under these

6



0
0.1
0.2
0.3(b)

h0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
40
60
80

x

Θ◦

−0.20−0.15−0.10−0.05 0 0.05 0.10 0.15
0

75
150

x

Θ◦

0
0.1
0.2
0.3(a)

h0

Figure 2: Equilibrium droplet profiles obtained from eqs 4 and 5 for different values of V
for a chemical heterogeneity given by Θ(x) = θ0 + σ sin(2πx/λ) with: (a) θ0 = 59◦, λ = 1.2,
and σ = 11; and (b) θ0 = 90◦, λ = 0.3, and σ = 60.

assumptions, we have the following relation:32

V =
d2

2

2θ − sin (2θ)

sin2 θ
. (4)

Since the contact angle at each point of the substrate is given by the function Θ(x), for a

given droplet shift `, we have that the following two conditions must also hold at equilibrium:

θ(d;V )−Θ(`+ d) = 0, (5a)

θ(d;V )−Θ(`− d) = 0, (5b)

where θ(d;V ) is determined from eq 4. Thus, the equilibrium solutions at any volume are

found by solving the above system of equations for d and ` numerically. Figure 2 depicts

an example of different equilibrium profiles found for different values of V and for two

different sets of parameters in the chemical heterogeneity, namely a hydrophilic substrate

with an average contact angle of θ0 = 59◦ (Figure 2a), and an alternating hydrophilic and
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Figure 3: Energy landscapes for the chemical heterogeneity given by eq 1 with θ0 = 58◦,
λ = 1, and σ = 10; and for two different volumes, V = 0.5 (a,b) and V = 0.8 (c,d). The
right panels show the corresponding contour plots where crosses and solid circles represent
the position of stable and saddle nodes, respectively. The color shading is from yellow (high
energy) to dark blue (low energy).

hydrophobic substrate with an average contact angle of θ0 = 90◦ (Figure 2b).

Energy of the system

Alternatively, we can also find the equilibrium points and their stability by looking at the

surface energy of the system35 which for a 2D droplet of equal contact angles is given, in

dimensionless form, as:

E(`, d) =
2θd

sin θ
−
∫ `+d

`−d
cos Θ(x)dx, (6)
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where we have considered a sufficiently small pore so that its effect on the surface energy

is negligible. Clearly the system equilibria correspond to stationary points/extrema of the

above energy function, i.e. when we have ∂`E(`, d) = ∂dE(`, d) = 0. Figure 3 depicts

two energy landscapes corresponding to two different droplet volumes and for a sinusoidal

chemical heterogeneity, with the location of the stable equilibria marked as crosses and the

unstable saddle equilibria as solid cicles. By comparing Figures 3a and 3b, it is evident that

changing the volume can largely modify the energy landscape of the system hence affecting

the dynamics of the droplet.

Computational method: Diffuse interface formulation

To dynamically model our system we adopt a Cahn-Hilliard phase-field formulation which

is generally used to describe a system of two phases separated by a diffuse interface (see

e.g. Refs. 36–39). In this approach, a locally conserved field, denoted as φ, plays the role of

an order parameter by taking two equilibrium limiting values +φe and −φe that represent

the liquid and air phases, respectively. The interface position of the droplet, which we denote

as h(x, t), is then located at the points where the order parameter vanishes, i.e., for a 2D

system we have φ[x, h(x, t)] = 0. The equilibrium properties of the model are based on a

Ginzburg-Landau formulation, where the total free energy of the system is given by

F[φ] =

∫
Ω

drf(φ) =

∫
Ω

dr

[
V (φ) +

ε2

2
|∇φ|2

]
, (7)

where f(φ) is the free energy density, Ω corresponds to the whole domain of the liquid/air

system, and the potential V (φ) is chosen as:

V (φ) = −1

2
αφ2 +

1

4
βφ4, (8)
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with α and β being positive constants so that the equilibrium value for the phase field is given

by φe =
√
α/β. The double-well form of the potential combined with the square gradient

term of the free energy ensures the existence of a well-defined interface of width ζ = ε/
√
α.

In this formulation, the chemical potential is defined as µ = δF/δφ = V ′(φ) − ε2∇2φ, and

the surface tension of the liquid-gas interface γlg can be easily obtained as the excess free

energy per unit surface area due to the inhomogeneity in φ, which gives γ`g = 2
√

2
3
ζαφ2

e.
8,40

To take into account the wetting properties of the solid substrate, the free-energy equation

(7) is modified by adding an extra term associated with solid-fluid interactions41

F[φ] =

∫
Ω

dr

[
V (φ) +

ε2

2
|∇φ|2

]
+

∫
s

dsfs(φs), (9)

where s denotes the solid surface. The function fs(φs) in this additional term enables us to

introduce wetting effects into the model. It is related to the molecular interactions between

fluid and solid, and it is usually expanded as a power series in φs,
42 where φs represents

the value of the phase field at the solid substrate. In the present study we shall keep only

the first-order term and write: fs = −aφs, where a describes the preference of the wall for

either the liquid phase (a > 0, hydrophilic conditions) or the air phase (a < 0, hydrophobic

conditions). It is important to emphasize that the linear term in the expansion of fs turns

out to be sufficient to describe partial wetting situations40,43 as the ones we are going to

consider here. We note, however, that for settings close to complete wetting (i.e. contact

angles close to zero) the inclusion of higher-order terms may be necessary to avoid effects

induced by density gradients on the solid substrate due to, e.g., the formation of mesoscopic

layers there.44,45

Our system is non-dimensionalized by choosing the following dimensionless variables:

φ∗ = φ/φe, r∗ = r/λ, (10a)

f ∗ = f/(φ2
eα), f ∗s = fs/γ`g, (10b)
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where λ is the wavelength of the chemical heterogeneity. By minimizing the correspond-

ing dimensionless free energy functional in eq 9, the equilibrium conditions are given by

µ = δF/δφ = 0, corresponding to setting the chemical potential to zero, and the wetting

boundary condition:40,41

ny ·∇φ|s =
γ̃

Cn

dfs
dφs

= − γ̃

Cn

a, (11)

where the asterisks have been dropped and we have defined the Cahn number as Cn = ζ/λ,

and γ̃ = 2
√

2φe/3γ`g. Here, ny is the normal outward unit vector to the substrate. For

a constant value of a, the corresponding equilibrium contact angle, θe, can be obtained by

making use of the Young-Dupré relation, cos θe = (γgs− γ`s)/γ`g, giving rise to the following

relation:40,41,46,47

cos θe =
1

2

[
(1 + A)3/2 − (1− A)3/2

]
, (12)

where we have defined A =
√

2γ̃a. In this approach, the different surface tensions γsg and

γsl can be obtained by integrating the free energy per unit area along the corresponding

interfaces, solid-gas and solid-liquid.40

Finally, the dynamics of the phase field is assumed to follow a conservation equation,

based on a time-dependent Ginzburg-Landau Hamiltonian (model B in the Hohenberg and

Halperin nomenclature48). In dimensional form it reads:

∂φ

∂t
= ∇ ·M∇µ = ∇ ·M∇

(
−αφ+ βφ3 − ε2∇2φ

)
, (13)

by using the diffusion time scale ζ2/Mα as the characteristic time scale and where µ is the

chemical potential defined earlier, and M is a mobility parameter, which in general depends

on φ but for simplicity here we take M = 1. Strictly speaking, eq 13 (model B) is expected

to be valid in a regime where the dynamics is dominated by diffusion-like mechanisms. In

fact, as it was shown in the Appendix of Ref. 8, eq 13 can be obtained from the full equations

for the order parameter φ (an advection-diffusion equation for φ that involves the velocity

field, coupled to the Navier-Stokes equation for the velocity field) in the limit of small Péclet
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number, in which diffusion dominates advection.

To implement an inflow-outflow BC with a single pore of length `p which is located within

the region the droplet is lying on, we impose a constant gradient of chemical potential along

`p. In particular, we take

ny ·∇µ|{x∈[−`p/2,+`p/2],y=0} = −vm, (14)

where vm is a constant parameter that controls the flow that is being pumped in (vm > 0) or

out (vm < 0). In our numerical computations we fix the value |vm| = 0.01 which guarantees

a sufficiently slow dynamics.

The dimensionless form of eq 13 is numerically solved by making use of an explicit

fourth-order Runge-Kutta algorithm with adaptive time stepsize, and a rectangular spatial

discretization with grid ∆x = ∆y = 0.05. All numerical integrations presented in this study

have been performed by setting the Cahn number to Cn = 0.05, and a fixed value of the pore

length `p = 2∆x. The interface position, h(x, t), is estimated by a linear interpolation of

the zero of the phase field, φ[x, h(x, t); t] = 0. This allows us to estimate the position of the

contact point of the liquid-air interface at the wall surface by using a parabolic extrapolation

of the nearest points of the droplet (see Ref. 8 for more details).

Results

We start by considering the periodic chemical heterogeneity shown in the bottom panel in

Figure 1a. In particular we assume that A in eq 12 varies as A = 0.3 + σ0 cos (λ0x) with

σ0 = 0.1 and consider different values of λ0. It can be shown that for this choice of A, the

corresponding equilibrium contact angle (cf. eq 12) is well approximated by eq 1 with σ = 10,

λ = λ0, and θ0 = 58◦. In our computations we take different ranges of the ratio between the

droplet volume and the heterogeneity wavelength, which we quantify by the dimensionless

parameter Λ = d0/λ, where d0 is the initial droplet radius. In addition, we impose an inflow
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and outflow conditions (for t > tf , blue line).

BC until time tf after which the BC is switched over to outflow conditions. Figure 4 shows

the time-dependent variation of the volume which illustrates its linear evolution.

First, we perform a test of the stability of the equilibrium points of the system for a given

volume by considering dynamic computations with initial conditions (ICs) generated from

perturbed stable equilibrium profiles. The results are presented in Figure 5 demarcating the

three different sets of computations with curves of different thickness. It is evident that any

IC which is close to a stable equilibrium point will converge to that state for sufficiently

long times. The middle panel of Figure 5 shows the corresponding path followed by the

droplet projected onto the surface energy on the (d, `) plane, demonstrating that the droplet

is indeed moving towards the local minimum. For one set of computations (thinnest curves),

the trajectory is initially attracted towards a saddle equilibrium, but then abruptly bends

towards the stable equilibrium. This kind of behaviour typically manifests itself as stick-

slip dynamics (see Ref. 35). We note that in all cases the solution adopts a circular arc

for most of the time, except during the initial stage, which is a consequence of the imposed

perturbed IC, and when the droplet exhibits stick-slip motion, which is when the two contact

angles are different from each other. For example, we have measured the relative difference

between the theoretically predicted energy E (given by eq 6) and the numerically computed

energy En (obtained by integrating the interfacial energy of the droplet), and observed that

∆E ≡ |E −En|/E exhibits an increased peak from ∆E ∼ 0.01 up to ∆E ∼ 0.04 (note that

13
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the analytical solution eq 4. In all panels, arrows indicate direction of time.

this is not shown in Figure 5) during the stick-slip motion observed in the set of computations

whith the thinnest curves, indicating hence a deviation from the circular arc solution.

In addition, we perform a set of computations by considering a homogeneous chemical

susbtrate and with a slow variation in the volume (inflow conditions). We consider two

different ICs with a contact angle that is far from the equilibrium one. The bottom panel

of Figure 5 shows the radius d as function of the volume V for both ICs, where we observe

that the initial states relax to the corresponding value of d which is given by the analytical
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respectively. At t = 2500 we switch from inflow to outflow BC (applied over the region
demarcated by the thick line at y = 0) (c) Heterogeneity profile used for the results. (d)
Spatio-temporal representation of the droplet dynamics during the inflow/outflow cycle.

solution eq 4 (solid line, note that the range used for V is quite short and hence the algebraic

behaviour of eq 4 is not elucidated). This demonstrates that the Young-Dupré equation can

be thought of as the “slow manifold” of the full diffuse-interface model.

Figure 6 shows snapshots of the dynamics of the droplet as the volume varies in time.

When the volume increases, the droplet remains centered at the same position (i.e. the shift

` is not changing) until it reaches some critical volume for which the droplet suddenly shifts

to the left (profile 3). As we keep increasing the volume, the droplet remains at this position

15
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for some range of volumes until it unpins, shifting to the right, thus becoming centred about

x = 0 (profile 4). During this movement, one of the two contact points exhibits a stick-slip

motion while the other one remains fixed nearly at the same position. At this point, we

restart the computations with an outflow BC and the droplet volume decreases with its

midpoint remaining fixed (cf. Figure 6b, profile 5). Below a critical volume the droplet shifts

to the right and remains there as the volume keeps decreasing further (profiles 6 to 7).
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Figure 8: Computations of the different quantities characterizing the droplet dynamics as
the volume is increased (blue solid lines) and decreased (red dashed lines) with a chemical
heterogeneity given by eq 1 with Λ = d0/λ = 4. (a) Shift `, (b) droplet half-width d, and
(c) one of the contact angles θ. In all panels, arrows indicate the direction of time.

To quantify the droplet dynamics, we monitor the droplet shift `, the half-width d and
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one of the contact angles, namely θ = θ1. Figure 7 shows the evolution of all three quantities

for the case of Λ = 0.8. We observe that the shift ` exhibits clear hysteresis as the volume

is increased and decreased, a loop induced by the chemical heterogeneity. The droplet half-

width and the contact angle exhibit a similar behavior characterized by stick-slip motion and

hysteresis (we note that θ2 would follow a similar trend with the only difference being during

the rapid stick-slip movements which would occur at slightly different times). Interestingly,

if we increase the value of Λ, which means that we either increase the initial volume of the

droplet or alternatively decrease the wavelength of the chemical heterogeneity, such stick-slip

motion becomes more prominent as the volume is increased/decreased. Figure 8 shows the

numerical results with Λ = 4 where we can see that this is indeed the case. Consequently,

the paths followed by a fattening and a thinning droplet appear to be markedly different,

particularly for the shift ` (cf. Figure 8a).

In fact, we observe that as we keep repeating the process of increasing and decreasing the

volume, the droplet settles into a dynamic behavior which is characterized by two distinct

regimes. Figure 9a shows the shift of the droplet for two cycles of the inflow-outflow process

with Λ = 4, where solid lines correspond to a fattening droplet and dashed lines to a thinning

droplet. Our numerical results reveal that for sufficiently small values of the volume (say

V . 37) there is a clear distinct hysteretic behavior and the droplet follows different paths

as the volume increases or decreases. However, for sufficiently large values of the volume

(V & 37), the droplet seems to settle into a more regular motion in which it remains at

the same position independently of the volume, i.e., the droplet shift settles to a fixed value

at large volumes. For this range of volumes, the only difference between increasing and

decreasing the volume is observed at around V ≈ 43 where the droplet quickly shifts back

and forth giving rise to a small fluctuation. Figures 9c and 9e show the evolution of the

half-width and contact angle, respectively, where we can see a similar hysteretic behaviour

as the volume increases/decreases up to volumes V ≈ 43, above which the droplet seems

to settle to a regular behaviour—note that the small fluctuations observed in Figure 9a at
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Figure 9: Computations of the droplet shift `, half-width d, and contact angle θ during two
cycles of increasing/decreasing the volume for two different types of chemical heterogeneities.
Blue solid lines correspond to increasing volume and red dashed lines correspond to decreas-
ing volume. (a,c,e) Sinusoidal heterogeneity given by eq 1 with Λ = d0/λ = 4. (b,d,f)
Stripped heterogeneity given by eq 2 with Λ = 4 which is alternating between hydrophilic
patches with Θ = 45◦ and hydrophobic patches with Θ = 92◦. Inset panels in (a,b) show
representative droplet shapes at a given time. In all panels, arrows indicate the direction of
time.

V ≈ 43 correspond, in fact, to a relatively large change on both the half-width and contact

angle.
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half-width d, and (c) one of the contact angles θ. In all panels, arrows indicate the direction
of time.

We have also considered a striped chemical heterogeneity which contains both hydrophilic

and hydrophobic patches. The numerical results with Λ = 4 are presented in Figure 9b, where

we can see that this type of chemical pattern tends to reduce hysteresis. We also observe

that on the second cycle of increasing/decreasing the volume, the droplet stays pinned on the

same location with the half-width remaining nearly constant and the contact angle increasing

or decreasing with the volume.

Figure 10 shows the numerical results obtained with the multiscale variation given by

eq 3. We can observe similar behavior in terms of stick-slip motion and hysteresis as for

the pure sinusoidal chemical variation case, although now we also see variations occuring at

shorter timescales precisely due to the multiscale character of the heterogeneities.

Analytical interpretation

The emergence of hysteresis is usually associated with the presence of stable and unstable

states in the system. As we have shown in Figure 3, the stability of the equilibrium states

depends on the volume of the droplet. Therefore, a way to characterize the emergence of

such dynamic behavior is to compute the full bifurcation diagram as the volume changes. We
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Figure 11: (a) Full 3D bifurcation diagram of the shift ` and droplet half-width d as the
volume V of the droplet is increased. Red dashed and green solid lines denote saddle points
and stable nodes, respectively. Panel (b) shows the corresponding 2D projections onto the
(V, `) (top) and (V, d) (bottom) planes, respectively. The labels S1 and S2 are used for
reference across the different panels. The substrate chemical variation is given by eq 1 with
θ0 = 58◦, λ = 1, and σ = 10.

note, however, that since we have two independent variables, ` and d (changing d does not

change ` and vice versa, while changing e.g. d will change θ) and one bifurcation parameter,

V (changing V will change both d and `), a co-dimension one phenomenon, the bifurcation

diagram needs to be represented in a 3D graph. Figure 11 depicts the full bifurcation diagram

for the sinusoidal case, including 2D projections to the (V, `) plane and (V, d) plane.

Figure 11a reveals a complicated 3D bifurcation structure which is periodic along the
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shift `. It also reveals that the stability of the different equilibrium points changes as the

volume is increased. This can be easily seen from the 2D projection onto the (V, `) plane

(top panel of Figure 11b). For small volumes (V ≈ 0.5), there are two distinct equilibrium

points, one of them being stable (denoted as S1) while the other one is a saddle node. As

the volume increases these points undergo a pitchfork bifurcation (in particular the stable

node follows a subcritical pitchfork bifurcation while the saddle point follows an inverted

supercritical pitchfork bifurcation) and so the stable node becomes a saddle, and the saddle

becomes a stable node. At higher volumes, another set of pitchfork bifurcations takes place

and the stability of both nodes is switched over again. Similarly, such a stability change

induced by the volume is also observed in the bottom panel of Figure 11b, where the 3D

bifurcation diagram is projected onto the (V, d) plane. It is noteworthy that a similar 2D

diagram was reported in Ref. 32 although no information about the stability nor a complete

picture of the bifurcation diagram, as it is provided here, was given. Moreover, as already

emphasized in the introduction, Ref. 32 was restricted to equilibrium considerations only,

since the volume was not changed dynamically as in our study; instead it was considered

as a varying parameter in an equation governing droplet equilibrium. It should be noted

that for even larger droplets (or equivalently smaller wave number λ in the periodic pattern

given by eq 1) the bifurcation diagram exhibits additional complexities. Figure 12 shows

the 2D projections of the bifurcation diagrams extended to larger volumes, where we can

see the emergence of multiple equilibrium points found for the same shift `. This is reflected

as S-shape branches which appear at the (V, d) plane and which give rise to new unstable

states.

An important point to remark is that the emergence of the stick-slip motion and hysteresis

observed in the computational results presented in the previous section are caused by two

factors, namely (a) the stability of the equilibrium points is affected by the droplet volume

and, (b) the pitchfork bifurcations occurring at different branches along the shift do not take

place at the same value of the volume. Indeed, Figure 13 shows a direct comparison of the
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Figure 12: 2D projections of the bifurcation diagram extended to larger volumes. Red
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numerical dynamic simulation being plotted on top of the bifurcation diagrams where we can

see a remarkable consistency between theory and numerical results. The top panel of Figure

13 shows the (V, `) diagram where we observe that as the volume is increased the droplet

follows a stable branch until there is a pitchfork bifurcation after which the droplet shifts

to one of the two nearby stable branches. As the volume keeps on increasing, the droplet

remains at this position until a second bifurcation occurs forcing the droplet to shift again

to a nearby stable branch. At this point we started emptying by reverting to an outflow BC

but the latter branch of equilibrium points remains stable as the volume is being decreased,

allowing hence the droplet to remain at this position until another bifurcation occurs forcing

the droplet to move again to another position. The bottom panel of Figure 13 shows the

(V, d) diagram where we also observe the droplet is following a skeleton path composed of

stable branches as the volume is increased and decreased. We note, however, that there is

some disagreement between the numerical results and the analytically computed branches,

particularly during outflow conditions, something which is in accordance to the fact that the
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droplet reamains on the ` = 0 location long after the solution becomes unstable (cf. Figure

13, top panel).

A final remark from the complex bifurcation diagrams observed for the case of larger

volumes (cf. Figure 12): we expect that for sufficiently large droplets the different sets of

bifurcations will start to overlap with each other and the rate at which the stability of the

solutions changes will be much faster than the growth rate of the volume droplet. At this

point, the droplet may settle into a periodic motion where the effect of the chemical hetero-

geneities becomes irrelevant, as it was observed in the numerical computations presented in

Figure 9.
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Conclusions

We have scrutinized the equilibria and dynamics of a droplet on a chemically modified

substrate. We have presented computational evidence that chemical heterogeneities play a

crucial role on both the droplet equilibria and filling-emptying dynamics. Our computational

framework is based on a diffuse-interface formulation together with an inflow-outflow BC

(which we impose as an additional condition for the chemical potential), thus allowing for

fluid to be pumped in and out of the droplet. Our model is expected to be valid in a regime

of slow dynamics which is dominated by diffusion. It is also important to remark that in our

study the droplet never detaches from the pore.

By imposing a simple periodic variation in the chemical properties of the substrate, we

demonstrated that the motion of the droplet is characterized by very rich dynamic phenom-

ena including hysteresis and a stick-slip motion of the contact points as the volume is varied.

In particular, all the quantities which characterize the droplet, namely its shift, droplet half-

width, and contact angle, undergo a hysteresis loop as the volume varies, indicating that

the droplet follows different paths depending on whether the volume increases or decreases

in time. In addition, our results demonstrate that such complex behavior becomes more

prominent as the wavelength of the periodic chemical variation is decreased.

By analyzing in detail the equilibrium properties of the system, we have constructed

the full bifurcation diagram depending on `, d, and V . Since there are two independent

parameters describing the position and shape of the droplet, namely its shift and droplet

half-width, and one control parameter, the volume, the bifurcation diagram needs to be rep-

resented as a 3D graph which is characterized by a complex behavior where the equilibrium

points change stability as the volume is increased. By looking in particular at an appropri-

ate 2D projection of the full bifurcation diagram, we have been able to unravel a series of

subcritical pitchfork bifurcations undergone by the droplet as its volume is increased, which

in turn gives rise to stick-slip motion and hysteresis behavior. Our computational results are

in excellent agreement with theoretical predictions obtained from the total interfacial energy
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of the system.

Finally, it is important to note that even though we have considered a system where the

volume of the droplet is modified by imposing an inflow-outflow BC, the results presented

here are expected to be observed in other problems where droplets have a time-dependent

volume variation, such evaporative systems.20,49 Moreover, there is a number of interesting

questions motivated by this study. For example, the problem droplets with a dynamic volume

variation over not only periodic substrates but also more complex geometries, e.g. considering

a chemical and/or topographical disorder. And quantifying hysteresis in terms of the strength

of the disorder, either quenched as is the case here, or temporal, is one of the general basic

questions in physics. Furthermore, geometries with multiscale effects, such as membranes

or rough-fractal surfaces, are also of great importance in many different applications and

understanding their interplay with an externally time-dependent control parameter, like the

time-dependent volume imposed here, is an open question that still eludes us. We shall

address these and related issues in future studies.
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Graphical TOC Entry

Liquid is pumped in or out through a pore (blue patch) into a droplet
on a chemically heterogeneous planar substrate. Right panel shows
the droplet shift ` as its volume increases (solid blue line) or decreases
(dashed red line). Arrows indicate direction of time.
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