37 research outputs found

    PET/PDT theranostics: Synthesis and biological evaluation of a peptide-targeted gallium porphyrin

    Get PDF
    The development of novel theranostic agents is an important step in the pathway towards personalised medicine, with the combination of diagnostic and therapeutic modalities into a single treatment agent naturally lending itself to the optimisation and personalisation of treatment. In pursuit of the goal of a molecular theranostic suitable for use as a PET radiotracer and a photosensitiser for PDT, a novel radiolabelled peptide–porphyrin conjugate targeting the α6β1-integrin has been developed. 69/71Ga and 68Ga labelling of an azide-functionalised porphyrin has been carried out in excellent yields, with subsequent bioconjugation to an alkyne-functionalised peptide demonstrated. α6β1-integrin expression of two cell lines has been evaluated by flow cytometry, and therapeutic potential of the conjugate demonstrated. Evaluation of the phototoxicity of the porphyrin–peptide theranostic conjugate in comparison to an untargeted control porphyrin in vitro, demonstrated significantly enhanced activity for a cell line with higher α6β1-integrin expression when compared with a cell line exhibiting lower α6β1-integrin expression

    Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic

    Get PDF
    Herein we present a significant step towards next-generation antibody-based photodynamic therapeutics. Site-selective modification of a clinically relevant monoclonal antibody, with a serum-stable linker bearing a strained alkyne, allows for the controlled Cu-free “click” assembly of an in vitro active antibody-based PDT agent using a water soluble azide porpyhrin

    Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment

    Get PDF
    The rapidly increasing interest in the synthesis of antibody–drug conjugates as powerful targeted anticancer agents demonstrates the growing appreciation of the power of antibodies and antibody fragments as highly selective targeting moieties. This targeting ability is of particular interest in the area of photodynamic therapy, as the applicability of current clinical photosensitizers is limited by their relatively poor accumulation in target tissue in comparison to healthy tissue. Although synthesis of porphyrin–antibody conjugates has been previously demonstrated, existing work in this area has been hindered by the limitations of conventional antibody conjugation methods. This work describes the attachment of azide-functionalized, water-soluble porphyrins to a tratuzumab Fab fragment via a novel conjugation methodology. This method allows for the synthesis of a homogeneous product without the loss of structural stability associated with conventional methods of disulfide modification. Biological evaluation of the synthesized conjugates demonstrates excellent selectivity for a HER2 positive cell line over the control, with no dark toxicity observed in either case

    pH-dependent modulation of reactivity in Ruthenium(II) organometallics

    Get PDF
    The pH-dependent intramolecular chelation of a tethered sulfonamide ligand in ruthenium(II) arene complexes is demonstrated, a process shown to modulate metal-centered reactivity toward the model ligand guanosine 5′-monophosphate within the physiologically relevant pH region

    Polyacrylamide nanoparticles as a delivery system in photodynamic therapy

    Get PDF
    Nanoparticles can be targeted towards, and accumulate in, tumor tissue by the enhanced permeability and retention effect, if sequestration by the reticuloendothelial system (RES) is avoided. The application of nanoparticles in the field of drug delivery is thus an area of great interest, due to their potential for delivering high payloads of drugs site selectively. One area which may prove to be particularly attractive is photodynamic therapy, as the reactive oxygen species (ROS) which cause damage to the tumor tissue are not generated until the drug is activated with light, minimizing generalized toxicity and giving a high degree of spatial control over the clinical effect. In the present study, we have synthesized two types of nanoparticles loaded with photodynamic sensitizers: polylysine bound tetrasulfonato-aluminum phthalocyanine entrapped nanoparticles (PCNP) and polylysine bound tetrasulfonato-aluminum phthalocyanine entrapped nanoparticles coated with a second, porphyrin based, photosensitizer (PCNP-P) to enhance the capacity for ROS generation, and hence therapeutic potential. The mean sizes of these particles were 45 +/- 10 nm and 95 +/- 10 nm respectively. Uptake of the nanoparticles by human Caucasian colon adenocarcinoma cells (HT29) was determined by flow cytometry and confocal microscopy. Cell viability assays using PCNP-P and PCNP corresponding to the minimum uptake time (25 h) demonstrated that these cancer cells can be damaged by light activation of these photodynamic nanoparticles both in the external media and after internalization. The results suggest that, in order to induce photodynamic damage, the nanoparticles need only to be associated with the tumor cell closely enough to deliver singlet oxygen: their internalization within target cells may not be necessary. Clinically, this could be of great importance as it may help to combat the known ability of many cancer cells to actively expel conventional anticancer drugs

    Development of PDT/PET theranostics: synthesis and biological evaluation of an ¹⁸F-radiolabeled water soluble porphyrin

    Get PDF
    Synthesis of the first water-soluble porphyrin radiolabeled with fluorine-18 is described: a new molecular theranostic agent which integrates the therapeutic selectivity of photodynamic therapy (PDT) with the imaging efficacy of positron emission tomography (PET). Generation of the theranostic was carried out through the conjugation of a cationic water-soluble porphyrin bearing an azide functionality to a fluorine-18 radiolabeled prosthetic bearing an alkyne functionality through click conjugation, with excellent yields obtained in both cold and hot synthesis. Biological evaluation of the synthesized structures shows the first example of an 18 F-radiolabeled porphyrin retaining photocytotoxicity following radiolabeling and demonstrable conjugate uptake and potential application as a radiotracer in vivo. The promising results gained from biological evaluation demonstrate the potential of this structure as a clinically relevant theranostic agent, offering exciting possibilities for the simultaneous imaging and photodynamic treatment of tumors

    Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy including senscence, necrosis, and autophagy, but not apoptosis

    Get PDF
    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

    The Application of Reversible Intramolecular Sulfonamide Ligation to Modulate Reactivity in Organometallic Ruthenium(II) Diamine Complexes

    Get PDF
    Metallation of biomacromolecular species forms the basis for the anticancer activity of many metallodrugs. A major limitation of these compounds is that their reactivity is indiscriminate and can, in principle, occur in healthy tissue as well as cancerous tissue, potentially leading to side effects in vivo. Here we present pH-dependent intramolecular coordination of an arene-tethered sulfonamide functionality in organometallic ruthenium(II) ethylenediamine complexes as a route to controlling the coordination environment about the central metal atom. Through variation of the sulfonamide R group and the length of the tether linking it to the arene ligand the acidity of the sulfonamide NH group, and hence the pH-region over which regulation of metal coordination occurs, can be modulated. Intramolecular sulfonamide ligation controlled the reactivity of complex 4 within the physiologically relevant pH-region, rendering it more reactive towards 5?-GMP in mildly acidic pH-conditions typical of tumour tissue compared to the mildly alkaline pH-conditions typical of healthy tissue. However, the activation of 4 by ring-opening of the chelate was found to be a slow process relative to the timescale of typical cell culture assays and members of this series of complexes were found not to be cytotoxic towards the HT-29 cell line. These complexes provide the basis for the development of analogues of increased potency where intramolecular sulfonamide ligation regulates reactivity and therefore cytotoxicity in a pH-dependent, and potentially, tissue-dependent manner

    Selective radiolabelling with 68Ga under mild conditions: a route towards a porphyrin PET/PDT theranostic agent

    Get PDF
    A theranostic conjugate for use as a positron emission tomography (PET) radiotracer and as a photosensitiser for photodynamic therapy (PDT) has been synthesised. A water-soluble porphyrin was coupled with the bifunctional chelate, H4Dpaa.ga. This conjugate is capable of rapid68Ga complexation under physiological conditions; with 93% and 80% radiochemical yields achieved, at pH 4.5 and pH 7.4 respectively, in 15 min at 25 °C. Photocytotoxicity was evaluated on HT-29 cells and showed the conjugate was capable of >50% cell death at 50 μM upon irradiation with light, while causing minimal toxicity in the absence of light (>95% cell survival)

    Synthesis of a novel HER2 targeted aza-BODIPY–antibody conjugate: synthesis, photophysical characterisation and in vitro evaluation

    Get PDF
    We herein report the synthesis and analysis of a novel aza-BODIPY–antibody conjugate, formed by controlled and regioselective bioconjugation methodology. Employing the clinically relevant antibody, which targets HER2 positive cancers, represents the first example of an antibody targeting strategy for this class of near-IR emitting fluorophore. The NIR fluorescence and binding properties were validated through in vitro studies using live cell confocal imaging
    corecore