25 research outputs found

    Plasticity in the Glucagon Interactome Reveals Novel Proteins That Regulate Glucagon Secretion in α-TC1-6 Cells

    Get PDF
    Glucagon is stored within the secretory granules of pancreatic alpha cells until stimuli trigger its release. The alpha cell secretory responses to the stimuli vary widely, possibly due to differences in experimental models or microenvironmental conditions. We hypothesized that the response of the alpha cell to various stimuli could be due to plasticity in the network of proteins that interact with glucagon within alpha cell secretory granules. We used tagged glucagon with Fc to pull out glucagon from the enriched preparation of secretory granules in α-TC1-6 cells. Isolation of secretory granules was validated by immunoisolation with Fc-glucagon and immunoblotting for organelle-specific proteins. Isolated enriched secretory granules were then used for affinity purification with Fc-glucagon followed by liquid chromatography/tandem mass spectrometry to identify secretory granule proteins that interact with glucagon. Proteomic analyses revealed a network of proteins containing glucose regulated protein 78 KDa (GRP78) and histone H4. The interaction between glucagon and the ER stress protein GRP78 and histone H4 was confirmed through co-immunoprecipitation of secretory granule lysates, and colocalization immunofluorescence confocal microscopy. Composition of the protein networks was altered at different glucose levels (25 vs. 5.5 mM) and in response to the paracrine inhibitors of glucagon secretion, GABA and insulin. siRNA-mediated silencing of a subset of these proteins revealed their involvement in glucagon secretion in α-TC1-6 cells. Therefore, our results show a novel and dynamic glucagon interactome within α-TC1-6 cell secretory granules. We suggest that variations in the alpha cell secretory response to stimuli may be governed by plasticity in the glucagon “interactome.

    Characterization of a far-red analog of ghrelin for imaging GHS-R in P19-derived cardiomyocytes.

    Get PDF
    Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr(3)(octanoyl), Lys(19)(Cy5)]ghrelin (1-19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys(19)(Cy5)]ghrelin (1-19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues

    Changes in the cardiac GHSR1a-ghrelin system correlate with myocardial dysfunction in diabetic cardiomyopathy in mice

    Get PDF
    Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are present in cardiac tissue. Activation of GHSR1a by ghrelin promotes cardiomyocyte contractility and survival, and changes in myocardial GHSR1a and circulating ghrelin track with end-stage heart failure, leading to the hypothesis that GHSR1a is a biomarker for heart failure. We hypothesized that GHSR1a could also be a biomarker for diabetic cardiomyopathy (DCM). We used two models of streptozotocin (STZ)-induced DCM: group 1, adult mice treated with 35 mg/kg STZ for 3 days; and group 2, neonatal mice treated with 70 mg/kg STZ at days 2 and 5 after birth. In group 1, mild fasting hyperglycemia (11 mM) was first detected 8 weeks after the last injection, and in group 2, severe fasting hyperglycemia (20 mM) was first detected 1 to 3 weeks after the last injection. In group 1, left ventricular function was slightly impaired as measured by echocardiography, and Western blot analysis showed a significant decrease in myocardial GHSR1a. In group 2, GHSR1a levels were also decreased as assessed by Cy5-ghrelin(1-19) fluorescence microscopy, and there was a significant negative correlation between GHSR1a levels and glucose tolerance. There were significant positive correlations between GHSR1a and ghrelin and between GHSR1a and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), a marker for contractility, but not between GHSR1a and B-type natriuretic peptide, a marker for heart failure. We conclude that the subclinical stage of DCM is accompanied by alterations in the myocardial ghrelin-GHSR1a system, suggesting the possibility of a biomarker for DCM

    Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.</p> <p>Methods</p> <p>Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of <sup>18 </sup>F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).</p> <p>Results</p> <p>In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both <sup>18</sup>F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.</p> <p>Conclusions</p> <p>The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.</p

    The role of the prohormone convertases in the post-translational processing of intestinal proglucagon

    No full text
    grantor: University of TorontoProglucagon (proG) is post-translationally processed in a tissue-specific manner to yield glucagon in the A cells of the pancreas, and glicentin, oxyntomodulin, glucagon-like peptide (GLP)-1 and -2 in the L cells of the intestine. Each of the constituent peptides of proG is flanked by pairs of basic amino acids, which are known sites for prohormone cleavage. The identification of the prohormone convertase (PC) family of processing enzymes has facilitated the study of prohormone processing. To determine the roles of PC1 and PC2, and other convertases, in the tissue-specific processing of proG, vaccinia virus (vv)-mediated infection of endocrine-derived cell lines was utilized. GH\sb3 and AtT-20 were co-infected with vv:proG plus vv:furin, vv:PC1, or vv:PC2. Cells were also infected with vv:PACE4, vv:PC5a or vv:PC5b alone, or with vv:PC2. PC1 processed proG to glicentin and oxyntomodulin, GLP-1\sp{\rm 1{-}37/36NH2} and GLP-1\sp{\rm 7{-}37/36NH2} and GLP-2. Infection with PC2 alone or in combination with other enzymes resulted in the production of glicentin, but not glucagon. To further confirm these findings, we stably transfected the pancreatic InR1-G9 cell line with PC1 and/or antisense PC2 (ASPC2). Transfection with PC1 increased glicentin, GLP-1\sp{\rm 1{-}36NH2} and GLP-2 production, while a reduction in PC2 attenuated glicentin, but not glucagon, production. Co-regulation of PC1 and proG mRNA in the L cell was examined in an enteroendocrine cell line, GTag-Y. Stimulation of protein kinase A in GTag-Y cells increased secretion of both GLP-1\sp{\rm 7{-}36NH2} and GLP-2, however, neither levels of proG nor PC1 mRNA were increased. Therefore, we were unable to show co-regulation of proG and PC1 due to lack of suitable models. Taken together, these studies establish a role for PC1 in the processing of proG to yield the intestinal peptides, glicentin, oxyntomodulin, GLP-1\sp{\rm 1{-}36NH2} and GLP-2, and suggest that PC2 is responsible for the processing of proG to glicentin, another enzyme being required for the production of glucagon.Ph.D

    Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts.

    No full text
    Carboxypeptidase E (CPE) functions as a regulated secretory pathway sorting receptor for several prohormones, including pro-opiomelanocortin (POMC), proenkephalin and proinsulin. The association of CPE with lipid rafts in the trans -Golgi network and secretory granule membranes is necessary for its sorting receptor function. We now provide evidence that a domain within the C-terminal 25 residues of CPE functions as a signal for both raft association and the sorting of CPE to the regulated secretory pathway. A fusion protein containing the extracellular domain of the human interleukin-2 receptor Tac (N-Tac) and the C-terminal 25 amino acids of CPE was transfected into Neuro2A cells. This fusion protein floated in sucrose density gradients, indicating raft association, and co-localized with chromogranin A (CGA), a secretory granule marker. To define further a minimum sequence required for raft association and sorting, deletion mutants of CPE that lacked the C-terminal four or 15 residues (CPE-Delta4 and CPE-Delta15 respectively) were transfected into a clone of CPE-deficient Neuro2A cells. In contrast with full-length CPE, neither CPE-Delta4 nor CPE-Delta15 floated in sucrose density gradients. The sorting of both CPE-Delta4 and CPE-Delta15 to the regulated secretory pathway was impaired, as indicated by significantly increased basal secretion and a lack of response to stimulation. Additionally, there was a significant decrease in the co-localization of mutant CPE immunofluorescence with CGA when compared with full-length CPE. Finally, the sorting of the prohormone POMC to the regulated pathway was impaired in cells transfected with either CPE-Delta4 or CPE-Delta15. We conclude that the sorting of CPE to the regulated secretory pathway in endocrine cells is mediated by lipid rafts, and that the C-terminal four residues of CPE, i.e. Thr(431)-Leu-Asn-Phe(434), are required for raft association and sorting

    Development of Candidates for Positron Emission Tomography (PET) Imaging of Ghrelin Receptor in Disease: Design, Synthesis, and Evaluation of Fluorine-Bearing Quinazolinone Derivatives

    No full text
    Molecular imaging with positron emission tomography (PET) is an attractive platform for noninvasive detection and assessment of disease. The development of a PET imaging agent targeting the ghrelin receptor (growth hormone secretagogue receptor type 1a or GHS-R1a) has the potential to lead to the detection and assessment of the higher than normal expression of GHS-R1a in diseases such as prostate, breast, and ovarian cancer. To enable the development of <sup>18</sup>F radiopharmaceuticals, we have designed and synthesized three series of quinazolinone derivatives, resulting in the identification of two compound (<b>5i</b>, <b>17</b>) with subnanomolar binding affinity and one fluorine-bearing compound (<b>10b</b>) with picomolar binding affinity (20 pM), representing the highest binding affinity for GHS-R1a reported to date. Two lead compounds (<b>5b</b>, IC<sub>50</sub> = 20.6 nM; <b>5e</b>, IC<sub>50</sub> = 9.3 nM) were successfully <sup>18</sup>F-radiolabeled with radiochemical purity of greater than 99%. Molecular modeling studies were performed to shed light on ligand–receptor interactions
    corecore