51 research outputs found

    Magnetic and dielectric properties of multiferroic Eu0.5Ba0.25Sr0.25TiO3 ceramics

    Full text link
    Dielectric and magnetic properties of Eu0.5Ba0.25Sr0.25TiO3 are investigated between 10 K and 300 K in the frequency range from 10 Hz to 100 THz. A peak in permittivity revealed near 130 K and observed ferroelectric hysteresis loops prove the ferroelectric order below thistemperature. The peak in permittivity is given mainly by softening of the lowest frequency polar phonon (soft mode revealed in THz and IR spectra) that demonstrates displacive character of the phase transition. Room-temperature X-ray diffraction analysis reveals cubic structure, but the IR reflectivity spectra give evidence of a lower crystal structure, presumably tetragonal I4/mcm with tilted oxygen octahedra as it has been observed in EuTiO3. The magnetic measurements show that the antiferromagnetic order occurs below 1.8 K. Eu0.5Ba0.25Sr0.25TiO3 has three times lower coercive field than Eu0.5Ba0.5TiO3, therefore we propose this system for measurements of electric dipole moment of electron.Comment: Phase Transitions, in pres

    Drone-Aided Detection of Weeds: Transfer Learning for Embedded Image Processing

    No full text
    In this article, we address the problem of hogweed detection using a drone equipped with red, green, blue (RGB) and multispectral cameras. We study two approaches: 1) offline detection running on the orthophoto of the area scanned within the mission and 2) real-time scanning from the frame stream directly on the edge device performing the flight mission. We show that by fusing the information from an additional multispectral camera installed on the drone, there is an opportunity to boost the detection quality, which can then be preserved even with a single RGB camera setup by the introduction of an additional convolution neural network trained with transfer learning to produce the fake multispectral images directly from the RGB stream. We show that this approach helps either eliminate the multispectral hardware from the drone or, if only the RGB camera is at hand, boost the segmentation performance by the cost of slight increase in computational budget. To support this claim, we have performed an extensive study of network performance in simulations of both the real-time and offline modes, where we achieve at least 1.1% increase in terms of the mean intersection over union metric when evaluated on the RGB stream from the camera and 1.4% when evaluated on orthophoto data. Our results show that the proper optimization guarantees a complete elimination of the multispectral camera from the flight mission by adding a preprocessing stage to the segmentation network without the loss of quality

    A tissue-mimicking phantom with flexible optical properties for studying photoacoustic response of nanoparticles

    No full text
    Photoacoustic imaging (PAI) is a rapidly growing imaging modality, which combines high contrast of optical absorption with deep penetration depth of ultrasound. When combined with endogenous contrast agents based on light-absorbing nanoparticles (NPs), PAI can visualize various biological processes and tissues. Here, we describe a simple experimental setup based on a tissue-mimicking phantom with flexible optical properties for studying photoacoustic (PA) response of NPs. Our approach is based on a polyacrylamide gel phantom with independently variable optical absorption and scattering. The phantom allows one to model and study PA response of contrast agents with diverse spatial distributions and concentrations. To demonstrate high potential of the developed experimental setup, we prepared a phantom with optical properties matching human prostate tissue and performed a PAI of laser-synthesized titanium nitride (TiN) NPs, distributed in a disk-shaped area, located 10 mm under the phantom surface. We believe that our approach will contribute the successful development of clinical PAI with NPs-based contrast agents

    Dielectric properties of carbon nanofibre/alumina composites

    Get PDF
    Carbon nanofibre (CNF)/Al2O3 composites with concentrations between 1 and 9 vol.% of CNF were prepared by the traditional ceramic processing route followed by spark plasma sintering. The dielectric properties of these composites have been studied in a broad frequency range from mHz to the infrared range. Unlike conventional composites, the percolation threshold in this system is more complex depending on the particles topology. Positive and negative variations by several orders of magnitude in the low frequency AC conductivity have been detected for concentrations near the threshold at ∼2 vol.% of CNF. To explain these results, a modified percolation model has been proposed which takes into consideration the effect of the concentration of the filler on the microstructure of the composite. © 2013 Elsevier Ltd. All rights reserved.The authors acknowledge funding through Projects No. 2010CZ0004, MAT2009-14534, MAT2011-29174-C02-01, the Czech Science Foundation Project P204/12/0232 and Czech Ministry of Education (Project MP0902). L. Fernandez-Garcia acknowledges JAE Predoctoral program for PhD grant.Peer Reviewe

    Hertz-to-terahertz dielectric response of nanoconfined water molecules

    Get PDF
    Broad-band dielectric spectroscopy, heat capacity measurements and molecular dynamic simulations are applied to study excitations of interacting electric dipoles spatially arranged in a network with an inter-dipole distance of 5-10 A. The dipoles with magnitude of 1.85 Debye are represented by single H2O molecules located in voids (0.5 nm size) formed by ions of the crystal lattice of cordierite. We discover emergence of nontrivial disordered paraelectric phase of dipolar system with signs of phase transition below 3 K.Comment: 3 pages, 4 figure

    Spin-phonon interaction increased by compressive strain in antiferromagnetic MnO thin films

    No full text
    MnO thin films with various thicknesses and strains were grown on MgO substrates by pulsed laser deposition technique, then characterized using x-ray diffraction and infrared reflectance spectroscopy. Films grown on (0 0 1)-oriented MgO substrates exhibit homogenous biaxial compressive strain which increases as the film thickness is reduced. For that reason, in paramagnetic phase, the frequency of doubly-degenerate phonon increases with the strain, and splits below Neel temperature T-N due to the magnetic-exchange interaction. The phonon splitting in the MnO (0 0 1) films is 20% larger than that of the bulk MnO. Films grown on (1 1 0)-oriented MgO substrates exhibit a huge phonon splitting already at room temperature due to the anisotropic in-plane compressive strain. Below T-N, the lower-frequency phonon splits in the IR spectra and the higher-frequency phonon strongly hardens in AFM phase; these features are evidences for a spin-order-induced structural phase transition from tetragonal to a lower symmetry phase. Total phonon splitting is 55 cm(-1) in (1 1 0)-oriented MnO film, which is more than twice the value in bulk MnO, but since the splitting is present already in paramagnetic phase, we cannot clearly correlate it with the value of exchange coupling constant. Nevertheless, at least observation of enhanced phonon splitting in strained MnO (0 0 1) films show that the exchange coupling could be enhanced by the compressive strain which supports recent theoretical predictions published by Wan et al (2016 Sci. Rep. 6 22743) and Fischer et al (2009 Phys. Rev. B 80 014408).11Nsciescopu

    Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites

    No full text
    (NiZn) FeO carbon nanofiber (CNF) nanocomposites with concentrations up to 5% in volume of CNFs were prepared by traditional ceramic processing and a subsequent spark plasma sintering at 860°C with a holding time of 1 min. Low-frequency conductivity and magnetic properties were studied, revealing the appearance of a ferromagnetic antiresonance when a certain value of conductivity is reached due to the introduction of a conductive second-phase CNF in the ferromagnetic matrix (ferrite), thereby opening a route to induce magnetically tunable transparency in these composites.Peer Reviewe
    corecore