8,240 research outputs found

    Elliptic operators in odd subspaces

    Full text link
    An elliptic theory is constructed for operators acting in subspaces defined via odd pseudodifferential projections. Subspaces of this type arise as Calderon subspaces for first order elliptic differential operators on manifolds with boundary, or as spectral subspaces for self-adjoint elliptic differential operators of odd order. Index formulas are obtained for operators in odd subspaces on closed manifolds and for general boundary value problems. We prove that the eta-invariant of operators of odd order on even-dimesional manifolds is a dyadic rational number.Comment: 27 page

    Heat Conduction in One-Dimensional chain of Hard Discs with Substrate Potential

    Full text link
    Heat conduction of one-dimensional chain of equivalent rigid particles in the field of external on-site potential is considered. Zero diameters of the particles correspond to exactly integrable case with divergent heat conduction coefficient. By means of simple analytical model it is demonstrated that for any nonzero particle size the integrability is violated and the heat conduction coefficient converges. The result of the analytical computation is verified by means of numerical simulation in a plausible diapason of parameters and good agreement is observedComment: 14 pages, 7 figure

    Van der Waals forces in density functional theory: perturbational long-range electron interaction corrections

    Full text link
    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a "range-separated hybrid" functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well-adapted to describe van der Waals complexes, like rare gas dimers.Comment: 8 pages, 1 figure, submitted to Phys. Rev.

    Cold electron Josephson transistor

    Get PDF
    A superconductor-normal metal-superconductor mesoscopic Josephson junction has been realized in which the critical current is tuned through normal current injection using a symmetric electron cooler directly connected to the weak link. Both enhancement of the critical current by more than a factor of two, and supercurrent suppression have been achieved by varying the cooler bias. Furthermore, this transistor-like device demonstrates large current gain \sim20) and low power dissipation

    Elliptic operators in even subspaces

    Full text link
    In the paper we consider the theory of elliptic operators acting in subspaces defined by pseudodifferential projections. This theory on closed manifolds is connected with the theory of boundary value problems for operators violating Atiyah-Bott condition. We prove an index formula for elliptic operators in subspaces defined by even projections on odd-dimensional manifolds and for boundary value problems, generalizing the classical result of Atiyah-Bott. Besides a topological contribution of Atiyah-Singer type, the index formulas contain an invariant of subspaces defined by even projections. This homotopy invariant can be expressed in terms of the eta-invariant. The results also shed new light on P.Gilkey's work on eta-invariants of even-order operators.Comment: 39 pages, 2 figure

    Intriguing Heat Conduction of a Polymer Chain

    Full text link
    We study heat conduction in a one-dimensional chain of particles with longitudinal as well as transverse motions. The particles are connected by two-dimensional harmonic springs together with bending angle interactions. Using equilibrium and nonequilibrium molecular dynamics, three types of thermal conducting behaviors are found: a logarithmic divergence with system sizes for large transverse coupling, 1/3 power-law at intermediate coupling, and 2/5 power-law at low temperatures and weak coupling. The results are consistent with a simple mode-coupling analysis of the same model. The 1/3 power-law divergence should be a generic feature for models with transverse motions.Comment: 4 page

    Recommended Thermal Rate Coefficients for the C + H3+_3^+ Reaction and Some Astrochemical Implications

    Get PDF
    We have incorporated our experimentally derived thermal rate coefficients for C + H3+_3^+ forming CH+^+ and CH2+_2^+ into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and use instead a more versatile fitting formula. At a temperature of 10 K and a density of 104^4 cm3^{-3}, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. Additionally, we find that the relatively small error on our thermal rate coefficients, 15%\sim15\%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.Comment: 19 pages, 5 figures. Accepted for publication in Ap

    Merged-beams Reaction Studies of O + H_3^+

    Get PDF
    We have measured the reaction of O + H3+ forming OH+ and H2O+. This is one of the key gas-phase astrochemical processes initiating the formation of water molecules in dense molecular clouds. For this work, we have used a novel merged fast-beams apparatus which overlaps a beam of H3+ onto a beam of ground-term neutral O. Here, we present cross section data for forming OH+ and H2O+ at relative energies from \approx 3.5 meV to \approx 15.5 and 0.13 eV, respectively. Measurements were performed for statistically populated O(3PJ) in the ground term reacting with hot H3+ (with an internal temperature of \approx 2500-3000 K). From these data, we have derived rate coefficients for translational temperatures from \approx 25 K to \approx 10^5 and 10^3 K, respectively. Using state-of-the-art theoretical methods as a guide, we have converted these results to a thermal rate coefficient for forming either OH+ or H2O+, thereby accounting for the temperature dependence of the O fine-structure levels. Our results are in good agreement with two independent flowing afterglow measurements at a temperature of \approx 300 K, and with a corresponding level of H3+ internal excitation. This good agreement strongly suggests that the internal excitation of the H3+ does not play a significant role in this reaction. The Langevin rate coefficient is in reasonable agreement with the experimental results at 10 K but a factor of \approx 2 larger at 300 K. The two published classical trajectory studies using quantum mechanical potential energy surfaces lie a factor of \approx 1.5 above our experimental results over this 10-300 K range.Comment: 43 pages, 11 figures. Submitted to the Astrophysical Journa

    Limitations in cooling electrons by normal metal - superconductor tunnel junctions

    Get PDF
    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do no more obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Secondly, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.Comment: 4 pages, 4 figures, added Ref. [6] + minor correction
    corecore