18 research outputs found
Advanced training systems
Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training
Intelligent computer-aided training and tutoring
Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed
Apollo experience report: Onboard navigational and alignment software
The onboard navigational and alignment routines used during the nonthrusting phases of an Apollo mission are discussed as to their limitations, and alternate approaches that have more desirable capabilities are presented. A more efficient procedure for solving Kepler's equation, which is used in the calculation of Kepler's problem and Lambert's problem is included, and a sixth-order predictor scheme with a Runge-Kutta starter is recommended for numerical integration. The extension of the rendezvous navigation state to include angle biases and the use of a fixed coordinate system is also evaluated
Intelligent Computer-Aided Training (ICAT)
The Software Technology Branch has developed and demonstrated a number of ICAT System for a variety of complex procedural tasks in the NASA operational environment. A general ICAT architecture was developed and shown to be adaptable across this spectrum of tasks. Currently underway is the assembly of a suite of software tools that will permit the training community to rapidly develop and deploy ICAT systems for a variety of Space Station training tasks. The use of ICAT technology for selected training applications within the Space Station Freedom program can significantly reduce the costs of training system development. Once developed ICAT systems can be more readily and efficiently evolved and maintained than many conventional training systems. ICAT systems can be delivered for both ground based and on-orbit training. The availability of sophisticated on-orbit training will serve to reduce EVA time and can be especially useful in preparing crew for the performance on infrequent, mission critical tasks. ICAT systems can deliver uniform but individualized training to large numbers of personnel in a workstation environment
The development and technology transfer of software engineering technology at NASA. Johnson Space Center
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described
Precision Study of Positronium: Testing Bound State QED Theory
As an unstable light pure leptonic system, positronium is a very specific
probe atom to test bound state QED. In contrast to ordinary QED for free
leptons, the bound state QED theory is not so well understood and bound state
approaches deserve highly accurate tests. We present a brief overview of
precision studies of positronium paying special attention to uncertainties of
theory as well as comparison of theory and experiment. We also consider in
detail advantages and disadvantages of positronium tests compared to other QED
experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May
30-31, 2003
Predicting flow reversals in chaotic natural convection using data assimilation
A simplified model of natural convection, similar to the Lorenz (1963)
system, is compared to computational fluid dynamics simulations in order to
test data assimilation methods and better understand the dynamics of
convection. The thermosyphon is represented by a long time flow simulation,
which serves as a reference "truth". Forecasts are then made using the
Lorenz-like model and synchronized to noisy and limited observations of the
truth using data assimilation. The resulting analysis is observed to infer
dynamics absent from the model when using short assimilation windows.
Furthermore, chaotic flow reversal occurrence and residency times in each
rotational state are forecast using analysis data. Flow reversals have been
successfully forecast in the related Lorenz system, as part of a perfect model
experiment, but never in the presence of significant model error or unobserved
variables. Finally, we provide new details concerning the fluid dynamical
processes present in the thermosyphon during these flow reversals
Complete Result for Positronium Energy Levels at Order alpha^6 m
We have completed theoretical predictions for positronium energy levels
through order alpha^6 m by the calculation of the spin independent, radiative
recoil correction. This contribution is significant and amounts to 10.64 MHz
for the 1S state. We further perform detailed comparison of theoretical
predictions to experimental results for 1S-2S and 2S-2P transitions.Comment: 9 pages, 2 tables. Email: [email protected]