44 research outputs found

    Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane : a probe to investigate chain-branching mechanism

    Get PDF
    Product formation, in particular ketohydroperoxide formation and decomposition, were investigated in time-resolved, Cl-atom initiated neopentane oxidation experiments in the temperature range 550-675 K using a photoionization time-of-flight mass spectrometer. Ionization light was provided either by Advanced Light Source tunable synchrotron radiation or similar to 10.2 eV fixed energy radiation from a H-2-discharge lamp. Experiments were performed both at 1-2 atm pressure using a high-pressure reactor and also at similar to 9 Torr pressure employing a low-pressure reactor for comparison. Because of the highly symmetric structure of neopentane, ketohydroperoxide signal can be attributed to a 3-hydroperoxy-2,2-dimethylpropanal isomer, i.e. from a gamma-ketohydroperoxide (gamma-KHP). The photoionization spectra of the gamma-KHP measured at low-and high pressures and varying oxygen concentrations agree well with each other, further supporting they originate from the single isomer. Measurements performed in this work also suggest that the "Korcek" mechanism may play an important role in the decomposition of 3-hydroperoxy-2,2-dimethylpropanal, especially at lower temperatures. However, at higher temperatures where gamma-KHP decomposition to hydroxyl radical and oxy-radical dominates, oxidation of the oxy-radical yields a new important channel leading to acetone, carbon monoxide, and OH radical. Starting from the initial neopentyl + O-2 reaction, this channel releases altogether three OH radicals. A strongly temperature-dependent reaction product is observed at m/z = 100, likely attributable to 2,2-dimethylpropanedial.Peer reviewe

    Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction

    Get PDF
    Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-alpha (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH(2)l(2) in the presence of excess O-2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 +/- 0.4) x 10(-13) cm(3) s(-1) and k(CH2OO + MACR) = (4.4 +/- 1.0) x 10(-13) cm(3) s(-1), where the stated +/- 2 sigma uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) <2 x 10(-16) cm(3) s(-1). For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) <2 x 10(-14) cm(3) s(-1) is obtained.Peer reviewe

    Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH 3 ) 2 COO

    Get PDF
    The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10–11 cm3 s–1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10–10 cm3 s–1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N2 from cavity ring-down decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10–10 to (2.29 ± 0.08) × 10–10 cm3 s–1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10–12 cm3 s–1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s–1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products

    Molecular weight growth in Titan\u27s atmosphere:branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes

    Get PDF
    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan\u27s characteristic haze. Current photochemical models of Titan\u27s atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product from the high-energy photolysis of propyne in Titan\u27s atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions

    Formation of dimethylketene and methacrolein by reaction of the CH radical with acetone

    Get PDF
    The reaction of the methylidyne radical (CH) with acetone ((CH3)2CO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of bromoform and react with acetone in an excess of helium and nitrogen gas flow. The main observed reaction exit channel is elimination of a hydrogen atom to form C4H6O isomers. Analysis of photoionization spectra identifies dimethylketene and methacrolein as the only H-elimination products. The best fit to the data gives branching ratios of 0.68 ± 0.14 for methacrolein and 0.32 ± 0.07 for dimethylketene. A methylketene spectrum measured here is used to reanalyze the photoionization spectrum obtained at m/z = 56 for the CH + acetaldehyde reaction, (Goulay et al., J. Phys. Chem. A, 2012, 116, 6091) yielding new H-loss branching ratios of 0.61 ± 0.12 for acrolein and 0.39 ± 0.08 for methylketene. The contribution from methyleneoxirane to the reaction product distribution is revised to be negligible. Coupled with additional product detection for the CD + acetone reaction, these observations pave the way for development of general set of reaction mechanisms for the addition of CH to compounds containing an acetyl subgroup

    Branching fractions of the CN + C3H6 reaction using synchrotron photoionization mass spectrometry: evidence for the 3-cyanopropene product

    No full text
    The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8 - 11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C3H3N and C4H5N, corresponding to CH3 and H elimination, respectively. The CH3 and H elimination channels are measured to have branching fractions of 0.59 + 0.15 and 0.41 + 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C4H 5N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113 - 118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 + 0.12 and 0.50 + 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH2CHCD3 reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH2CHCD 2CN), providing further evidence for the formation of the 3-cyanopropene reaction product. Copyright 2011 American Chemical Society

    Fivevs.six membered-ring PAH products from reaction ofo-methylphenyl radical and two C3H4isomers

    No full text
    Gas-phase reactions of theo-methylphenyl (o-CH3C6H4) radical with the C3H4isomers allene (H2C-C-CH2) and propyne (HCC-CH3) are studied at 600 K and 4 Torr (533 Pa) using VUV synchrotron photoionisation mass spectrometry, quantum chemical calculations and RRKM modelling. Two major dissociation product ions arise following C3H4addition:m/z116 (CH3loss) and 130 (H loss). These products correspond to small polycyclic aromatic hydrocarbons (PAHs). Them/z116 signal for both reactions is conclusively assigned to indene (C9H8) and is the dominant product for the propyne reaction. Signal atm/z130 for the propyne case is attributed to isomers of bicyclic methylindene (C10H10) + H, which contains a newly-formed methylated five-membered ring. Them/z130 signal for allene, however, is dominated by the 1,2-dihydronaphthalene isomer arising from a newly created six-membered ring. Our results show that new ring formation from C3H4addition to the methylphenyl radical requires anortho-CH3group - similar too-methylphenyl radical oxidation. These reactions characteristically lead to bicyclic aromatic products, but the structure of the C3H4co-reactant dictates the structure of the PAH product, with allene preferentially leading to the formation of two six-membered ring bicyclics and propyne resulting in the formation of six and five-membered bicyclic structures

    Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: Application to low-temperature kinetics and product detection

    No full text
    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit
    corecore