42 research outputs found
A long N-terminal-extended nested set of abundant and antigenic major histocompatibility complex class I natural ligands from HIV envelope protein
Viral antigens complexed with major histocompatibility complex (MHC) class I molecules are recognized by cytotoxic T lymphocytes on infected cells. Assays with synthetic peptides identify optimal MHC class I ligands often used for vaccines. However, when natural peptides are analyzed, more complex mixtures including long peptides bulging in the middle of the binding site or with carboxyl extensions are found, reflecting lack of exposure to carboxypeptidases in the antigen processing pathway. In contrast, precursor peptides are exposed to extensive cytosolic aminopeptidase activity, and fewer than 1% survive, only to be further trimmed in the endoplasmic reticulum. We show here a striking example of a nested set of at least three highly antigenic and similarly abundant natural MHC class I ligands, 15, 10, and 9 amino acids in length, derived from a single human immunodeficiency virus gp160 epitope. Antigen processing, thus, gives rise to a rich pool of possible ligands from which MHC class I molecules can choose. The natural peptide set includes a 15-residue-long peptide with unprecedented 6 N-terminal residues that most likely extend out of the MHC class I binding groove. This 15-mer is the longest natural peptide known recognized by cytotoxic T lymphocytes and is surprisingly protected from aminopeptidase trimming in living cells.This work was supported by grants from European Union, Ministerio de Educación y Ciencia, Comunidad de Madrid, Instituto de Salud Carlos III, Red Temática de Investigación Cooperativa en Sindrome de Inmunodeficiencia Adquirida (SIDA) del Fondo de Investigaciones Sanitarias (to M. D. V.), Comunidad de Madrid, Instituto de Salud Carlos III, Fundación para la Investigación y la Prevención del Sindrome de Inmunodeficiencia Adquirida en España (to D. L.), and by European Commission Grant QLK2-CT-2001-01167 (to P. M. V. E.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.S
A Detailed Analysis of the Murine TAP Transporter Substrate Specificity
The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation.We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection.Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models
The Role of Insulin-Regulated Aminopeptidase in MHC Class I Antigen Presentation
Production of MHC-I ligands from antigenic proteins generally requires multiple proteolytic events. While the proteolytic steps required for antigen processing in the endogenous pathway are clearly established, persisting gaps of knowledge regarding putative cross-presentation compartments have made it difficult to map the precise proteolytic events required for generation of cross-presented antigens. It is only in the past decade that the importance of aminoterminal trimming as the final step in the endogenous presentation pathway has been recognized and that the corresponding enzymes have been described. This review focuses on the aminoterminal trimming of exogenous cross-presented peptides, with particular emphasis on the identification of insulin responsive aminopeptidase (IRAP) as the principal trimming aminopeptidase in endosomes and phagosomes
Le rôle d' "insulin-responsive aminopeptidase" dans la représentation croisée d'antigène
PARIS5-BU Méd.Cochin (751142101) / SudocSudocFranceF
The role of endocytic trafficking in antigen T cell receptor activation
International audienceAntigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation
EARLY ORTHODONTIC TREATMENT- CASE REPORT
The early orthodontic treatment is one of the most frequent debates in orthodontics. The clues for early orthodontic treatment are the early recognition of malocclusion, the proper timing for orthodontics and the initial therapies. In this early phase the clinician can begin preventive therapy, functional therapy and interception in the first stage of malocclusion in order to diminish or to stop the abnormal growth and development of jaws and dental arches. In this paper we present a patient during mixed dentition period with class II skeletal malocclusion, vertical growth pattern, treated by simple orthopedic and orthodontic procedures. The patient showed important correction of skeletal imbalance, good dental alignment and class I occlusion at the end of the early phase of the orthodontic treatment