1,447 research outputs found

    Metallic and insulating behaviour of the two-dimensional electron gas on a vicinal surface of Si MOSFETs

    Full text link
    The resistance R of the 2DEG on the vicinal Si surface shows an unusual behaviour, which is very different from that in the (100) Si MOSFET where an unconventional metal to insulator transition has been reported. The crossover from the insulator with dR/dT0 occurs at a low resistance of R_{\Box}^c \sim 0.04h/e^2. At the low-temperature transition, which we attribute to the existence of a narrow impurity band at the interface, a distinct hysteresis in the resistance is detected. At higher temperatures, another change in the sign of dR/dT is seen and related to the crossover from the degenerate to non-degenerate 2DEG.Comment: 4 pages, 4 figure

    Giant Fluctuations of Coulomb Drag in a Bilayer System

    Full text link
    We have observed reproducible fluctuations of the Coulomb drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed the average drag, giving rise to random changes of the sign of the drag. The fluctuations are found to be much larger than previously expected, and we propose a model which explains their enhancement by considering fluctuations of local electron properties.Comment: 10 pages, 4 figure

    Inhomogeneous broadening of the exciton band in optical absorption spectra of InP/ZnS nanocrystals

    Full text link
    In this work, we have simulated the processes of broadening the first exciton band in optical absorption spectra (OA) for InP/ZnS ensembles of colloidal quantum dots (QDs). A phenomenological model has been proposed that takes into account the effects of the exciton–phonon interaction, and allows one to analyze the influence of the static and dynamic types of atomic disorder on the temperature changes in the spectral characteristics in question. To vary the degree of static disorder in the model system, we have used a parameter δ, which characterizes the QD dispersion in size over the ensemble. We have also calculated the temperature shifts of the maxima and changes in the half-width for the exciton peaks in single nanocrystals (δ = 0), as well as for the integrated OA bands in the QD ensembles with different values of δ = 0.6–17%. The simulation results and the OA spectra data measured for InP/ZnS nanocrystals of 2.1 nm (δ = 11.1%) and 2.3 nm (δ = 17.3%), are in good mutual agreement in the temperature range of 6.5 K–RT. It has been shown that the contribution of static disorder to the observed inhomogeneous broadening of the OA bands for the QDs at room temperature exceeds 90%. The computational experiments performed indicate that the temperature shift of the maximum for the integrated OA band coincides with that for the exciton peak in a single nanocrystal. In this case, a reliable estimate of the parameters of the fundamental exciton–phonon interaction can be made. Simultaneously, the values of the specified parameters, calculated from the temperature broadening of the OA spectra, can be significantly different from the true ones due to the effects of static atomic disorder in real QD ensembles. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was supported by RFBR according to the research project № 18-32-00664 and Act 211 Government of the Russian Federation, contract no. 02.A03.21.0006. I.W. thanks the Minobrnauki initiative research project № 16.5186.2017/8.9 for support
    corecore