34 research outputs found

    Allelic Variants of Melanocortin 3 Receptor Gene (MC3R) and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets

    Get PDF
    INTRODUCTION: The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3 receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets. SUBJECTS AND METHODS: This research is based on the NUGENOB study, a trial conducted to assess weight loss during a 10-week dietary intervention involving two different hypo-energetic (high-fat and low-fat) diets. A total of 760 obese patients were genotyped for 10 single nucleotide polymorphisms covering the single exon of MC3R gene and its flanking regions, including the missense variants Thr6Lys and Val81Ile. Linear mixed models and haplotype-based analysis were carried out to assess the potential association between genetic polymorphisms and differential weight loss, fat mass loss, waist change and resting energy expenditure changes. RESULTS: No differences in drop-out rate were found by MC3R genotypes. The rs6014646 polymorphism was significantly associated with weight loss using co-dominant (p = 0.04) and dominant models (p = 0.03). These p-values were not statistically significant after strict control for multiple testing. Haplotype-based multivariate analysis using permutations showed that rs3827103-rs1543873 (p = 0.06), rs6014646-rs6024730 (p = 0.05) and rs3746619-rs3827103 (p = 0.10) displayed near-statistical significant results in relation to weight loss. No other significant associations or gene*diet interactions were detected for weight loss, fat mass loss, waist change and resting energy expenditure changes. CONCLUSION: The study provided overall sufficient evidence to support that there is no major effect of genetic variants of MC3R and differential weight loss after a 10-week dietary intervention with hypo-energetic diets in obese Europeans

    Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats

    Get PDF
    Background and Aims: The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. Results: Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p.), while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R) and cannabinoid receptor (CB1). In VAN from diet-induced obese (DIO) Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. Conclusions: Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Keio Total Knee Arthroplasty: Concept, Design, and Clinical Results

    No full text

    Biomechanical evaluation of two clinical tests for plantar heel pain: The dorsiflexion-eversion test for tarsal tunnel syndrome and the windlass test for plantar fasciitis

    No full text
    Background: Plantar heel pain may result from several conditions such as tarsal tunnel syndrome (TTS) and plantar fasciitis. The dorsiflexion-eversion test is used to diagnose TTS, whereas the windlass test is used for plantar fasciitis. Given the similarity between both tests, the purpose of this study was to evaluate whether these tests are able to selectively load the structures which they aim to examine. Methods: Both tests were evaluated in six cadavers by measuring strain in the plantar fascia, tibial nerve, lateral plantar nerve (LPN), and medial plantar nerve (MPN) using miniature displacement transducers. Longitudinal excursion of the nerves was measured with a digital caliper. Results: With the dorsiflexion-eversion test, dorsiflexion and eversion of the ankle in combination with extension of the metatarsophalangeal (NITP) joints significantly increased strain in the tibial nerve (+1.1%), LPN (+2.2%), and MPN (+3.3%) but also in the plantar fascia (+1.2%) (all: p = 0.016). Both components (dorsiflexion-eversion and MTP extension) resulted in significant increases. With the windlass test, extension of all MTP joints significantly increased strain in the plantar fascia (+0.4%, p = 0.016), but also in the tibial nerve (+0.4%, p = 0.016), LPN (+0.8%, p = 0.032) and MPN (+2.0%, p = 0.016). Excursion of the nerves was always in the distal direction but only reached significance for the tibial nerve (6.9 mm, p = 0.016) and LPN (2.2 mm, p = 0.032) during the dorsiflexion-eversion test. Conclusions: Both tests mechanically challenge various structures that have been associated with plantar heel pain. This questions the usefulness of the tests in the differential diagnosis of plantar heel pain
    corecore