245 research outputs found

    A preliminary feasibility study for the underground disposal of carbon dioxide in UK

    Get PDF
    The Association of the Coal Producers of the European Community are agreed that immediate action is required to reduce the build up of greenhouse gases in the atmosphere (Harrison, 1990). This is considered necessary even though the effect of these gases on global climate and the human race, are very uncertain mainly because the factors and processes affecting climatic change are poorly understood

    The linewidth of a non-Markovian atom laser

    Get PDF
    We present a fully quantum mechanical treatment of a single mode atom laser including pumping and output coupling. By ignoring atom-atom interactions, we have solved this model without making the Born-Markov approximation. We find substantially less gain narrowing than is predicted under that approximation.Comment: 4 pages, 1 encapsulated postscript figur

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure

    Neutrino flavor conversion in a neutrino background: single- versus multi-particle description

    Full text link
    In the early Universe, or near a supernova core, neutrino flavor evolution may be affected by coherent neutrino-neutrino scattering. We develop a microscopic picture of this phenomenon. We show that coherent scattering does not lead to the formation of entangled states in the neutrino ensemble and therefore the evolution of the system can always be described by a set of one-particle equations. We also show that the previously accepted formalism overcounts the neutrino interaction energy; the correct one-particle evolution equations for both active-active and active-sterile oscillations contain additional terms. These additional terms modify the index of refraction of the neutrino medium, but have no effect on oscillation physics.Comment: 12 pages, 3 figures, minor typos correcte

    The scattering of muons in low Z materials

    Full text link
    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.Comment: pdfeTeX V 3.141592-1.21a-2.2, 30 pages with 22 figure

    B-->pi and B-->K transitions in standard and quenched chiral perturbation theory

    Get PDF
    We study the effects of chiral logs on the heavy-->light pseudoscalar meson transition form factors by using standard and quenched chiral perturbation theory combined with the static heavy quark limit. The resulting expressions are used to indicate the size of uncertainties due to the use of the quenched approximation in the current lattice studies. They may also be used to assess the size of systematic uncertainties induced by missing chiral log terms in extrapolating toward the physical pion mass. We also provide the coefficient multiplying the quenched chiral log, which may be useful if the quenched lattice studies are performed with very light mesons.Comment: 33 pages, 8 PostScript figures, version to appear in PR

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Anti-neutrophil cytoplasmic antibodies:Current diagnostic and pathophysiological potential

    Get PDF
    Rapidly progressive glomerulonephritis (RPGN) is a clinical syndrome characterized by rapid deterioration of renal function occurring within days or weeks together with signs of glomerulonephritis, that is, proteinuria and hematuria with cellular casts. The syndrome is, in many cases, histopathologically manifested as fibrinoid necrosis of the capillary wall with extracapillary proliferation and crescent formation [1]. This so-called necrotizing crescentic glomerulonephritis (NCGN) is seen in 5 to 15% of renal biopsies in most series [1–3]. Although it is infrequent, the importance of the condition is illustrated by the fact that most cases of NCGN, if left untreated, develop renal failure within days or weeks [1]. Based on immunohistopathology NCGN can be subdivided into three distinct categories. The first one, occurring in 2 to 20% of the cases and characterized by linear staining of the glomerular capillary wall for immunoglobulin and complement, has classically been described as anti-glomerular basement membrane (GBM) disease. It is associated with autoantibodies to structural antigens of the GBM, in particular to the first globular noncollagen domain of collagen type IV [4]. The antibodies are considered of pathogenetic significance. The second category, comprising 15 to 50% of cases, is characterized by granular deposits of immunoglobulin and complement suggesting that immune complexes are pathogenetically involved. This type occurs in conjunction with systemic autoimmune diseases such as lupus erythematosus, in cases of post-infectious glomerulonephritis, IgA nephropathy or Henoch-Schönlein purpura, or as an idiopathic variety. The third group of NCGN, occurring in 40 to 80%, demonstrates only a few or no immune deposits and is designated as pauci-immune NCGN [1–3, 5, 6]. Pauci-immune NCGN occurs as part of Wegener's granulomatosis (WG) or related conditions, or without systemic vasculitis (idiopathic NCGN). The pathophysiology of this pauci-immune type of NCGN has not been elucidated. Within the last decade, however, it has been recognized that the condition is associated with autoantibodies to cytoplasmic components of neutrophils (anti-neutrophil cytoplasmic antibodies or ANCA).ANCA were first described in 1982 by Davies et al in a few patients with segmental necrotizing glomerulonephritis [7]. Only in 1985 did it become apparent that ANCA are a sensitive and specific marker for Wegener's granulomatosis (WG) [8]. Later on, ANCA were described in patients with microscopic polyarteritis [9]. Falk and Jennette, in 1988, showed that ANCA are also associated with the idiopathic form of pauci-immune NCGN [10]. These data have now been confirmed by many groups and support the view that ANCA-associated glomerulonephritis and vasculitis is, indeed, a distinct disease category. A number of studies, in addition, have suggested that ANCA are involved in the pathophysiology of the aforementioned disorders. As ANCA, however, have recently also been detected in a wide range of inflammatory and infectious conditions, a critical reappraisal of the diagnostic significance of ANCA-testing seems justified.In this review we will evaluate the current state of ANCA-testing as well as elaborate on the pathophysiological role of the autoantibodies in necrotizing glomerulonephritis and vasculitis. Data presented recently at the Fifth International Workshop on ANCA, held in Cambridge, United Kingdom, will be included [11]. As such, it adds to previous reviews on ANCA that were published following the Second [12], Third [13], and Fourth [14] Workshops on ANCA
    • …
    corecore