9 research outputs found

    Near-Earth space shows its stripes

    No full text

    Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause

    No full text
    International audienceBased on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90° away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials)

    LatHyS global hybrid simulation of the BepiColombo second Venus flyby

    No full text
    Plasma and magnetic field observations by BepiColombo during its 2nd Venus flyby in August 10, 2021 have been examined and compared with the newly developed global hybrid simulation LatHyS for the Venusian environment. The LatHyS-Venus simulation was first validated by a comparison with Venus Express observations obtained during average solar wind conditions, before it was applied to the BepiColombo flyby using as inputs solar wind parameters measured upstream of Venus by Solar Orbiter. The simulation confirms that BepiColombo passed through the stagnation region of Venus, which supports the results obtained by data analysis. In addition, we have sampled the plasma parameters along the BepiColombo trajectory and constructed the energy spectrum for two species, i.e., protons of both solar wind and planetary origins, and planetary oxygen ions, and discussed the possible effects due to the limited field of views of the plasma instruments onboard BepiColombo. The most intense observational features are properly captured in the LatHyS-Venus simulation, which show that the model is a powerful tool for interpreting and understanding in-situ data obtained from the instruments with a limited field of views. The estimated ion escape for protons and oxygen ions at Venus during the BepiColombo flyby is of the order of ∼1024 ions/s, which is the same order of magnitude compared to the estimation from Venus Express observations at the solar minimum

    Forecasting Heliospheric CME Solar-Wind Parameters Using the UCSD Time-Dependent Tomography and ISEE Interplanetary Scintillation Data: The 10 March 2022 CME

    No full text
    Remotely sensed interplanetary scintillation (IPS) data from the Institute for Space-Earth Environmental Research (ISEE), Japan, allows a determination of solar-wind parameters throughout the inner heliosphere. We show the 3D analysis technique developed for these data sets that forecast plasma velocity, density, and component magnetic fields at Earth, as well at the other inner heliospheric planets and spacecraft. One excellent coronal mass ejection (CME) example that occurred on the 10 March 2022 was viewed not only in the ISEE IPS analyses, but also by the spacecraft near Earth that measured the CME arrival at one AU. Solar Orbiter, that was nearly aligned along the Earth radial at 0.45 AU, also measured the CME in plasma density, velocity, and magnetic field. BepiColombo at 0.42 AU was also aligned with the STEREO A spacecraft, and viewed this CME. The instruments used here from BepiColombo include: 1) the European-Space-Agency Mercury-Planetary-Orbiter magnetic field measurements; 2) the Japan Aerospace Exploration Agency Mio spacecraft Solar Particle Monitor that viewed the CME Forbush decrease, and the Mercury Plasma Experiment/Mercury Electron Analyzer instruments that measured particles and solar-wind density from below the spacecraft protective sunshield covering. This article summarizes the analysis using ISEE, Japan real-time data for these forecasts: it provides a synopsis of the results and confirmation of the CME event morphology after its arrival, and discusses how future IPS analyses can augment these results.</p

    LatHyS global hybrid simulation of the BepiColombo second Venus flyby

    No full text
    Plasma and magnetic field observations by BepiColombo during its 2nd Venus flyby in August 10, 2021 have been examined and compared with the newly developed global hybrid simulation LatHyS for the Venusian environment. The LatHyS-Venus simulation was first validated by a comparison with Venus Express observations obtained during average solar wind conditions, before it was applied to the BepiColombo flyby using as inputs solar wind parameters measured upstream of Venus by Solar Orbiter. The simulation confirms that BepiColombo passed through the stagnation region of Venus, which supports the results obtained by data analysis. In addition, we have sampled the plasma parameters along the BepiColombo trajectory and constructed the energy spectrum for two species, i.e., protons of both solar wind and planetary origins, and planetary oxygen ions, and discussed the possible effects due to the limited field of views of the plasma instruments onboard BepiColombo. The most intense observational features are properly captured in the LatHyS-Venus simulation, which show that the model is a powerful tool for interpreting and understanding in-situ data obtained from the instruments with a limited field of views. The estimated ion escape for protons and oxygen ions at Venus during the BepiColombo flyby is of the order of ∼1024 ions/s, which is the same order of magnitude compared to the estimation from Venus Express observations at the solar minimum

    BepiColombo mission confirms stagnation region of Venus and reveals its large extent

    Get PDF
    The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure
    corecore