7 research outputs found

    Desarrollo de un micro-reactor de lecho transportado y su aplicación al estudio craqueo catalítico

    Full text link
    La evaluación en laboratorio de los catalizadores de FCC necesita el empleo de unidades de laboratorio propias a este proceso debido a la desactivación muy rápida del catalizador. En el presente trabajo se plantea la construcción, optimización y aplicación al ensayo de catalizadores de FCC de un nuevo sistema de reacción de laboratorio denominado MicroDowner, que funciona con un reactor de lecho transportado descendente y cortos tiempos de residencia. Su aplicación principal va dirigida al ensayo de catalizadores de FCC, pero también puede ser utilizado en otros procesos que requieran tiempos de reacción cortos como por ejemplo procesos de oxidación selectiva. Después de estudiar la influencia de las condiciones de operación sobre los rendimientos experimentales proporcionados por la unidad y establecer un protocolo experimental estándar, se comparó con otras unidades de ensayo de catalizador como la unidad de laboratorio MAT y la planta piloto DCR. Los experimentos realizados han mostrado que el reactor construido permite obtener resultados muy similares a los obtenidos en la planta piloto, y lógicamente destacando las diferencias ya conocidas entre planta piloto y reactor MAT, en especial en el rendimiento a olefinas y a coque. La unidad MicroDowner se ha utilizado para evaluar el procesamiento de nafta en una unidad de FCC con el objetivo de incrementar la producción de olefinas cortas. Al contrario de la nafta LSR, que sólo craquea a temperaturas muy altas, la nafta de FCC reacciona apreciablemente incluso a temperaturas moderadas. El rendimiento a olefinas cortas aumenta con el incremento de la temperatura de reacción mientras que la selectividad disminuye, siendo la adición de zeolita ZSM5 siempre beneficiosa para la obtención de olefinas cortas. En todos los esquemas considerados se consigue una amplia reducción del contenido en olefinas de la gasolina alimentada.Sauvanaud ., LL. (2004). Desarrollo de un micro-reactor de lecho transportado y su aplicación al estudio craqueo catalítico [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8641Palanci

    Coke steam reforming in FCC regenerator: A new mastery over high coking feeds

    Full text link
    [EN] One of the crucial problems of processing residual feeds in the FCC is their high coking tendency, which limits their use in the FCC and requires them to be mixed with lighter feeds to be processed in conventional FCC units. A step-out improvement of the FCC process to use in processing heavy feeds is presented, where the heat balance in the unit is maintained by removing the high coke-on-catalyst by a combination of coke combustion and reforming, i.e., coke steam reforming (CSR) in the regenerator. This option enables using feeds with more than 10% Conradson Carbon while still maintaining the possibility to control the heat balance in the unit without using partial combustion or catalyst coolers. Although the Equilibrium catalyst has little CSR activity, we have found that hydrotalcite materials, besides having an excellent catalytic cracking selectivity for heavy feeds, also have significant CSR activity. We have demonstrated that CSR can be performed together with combustion at conditions found in the FCC regenerator so that the regenerator temperature remains within traditional limits despite higher coke-on-catalyst, and the coke on the catalyst is nearly completely removed. While the reaction rate at higher temperatures seems to obey first order, steam reforming coke removal kinetics at lower (750 degrees C) temperatures seem more complex due to the heterogeneous nature of coke.The authors thank BP Products North America and Consolider-Ingenio 2010 (MULTICAT project) for their financial support and permission to publish this work.Corma Canós, A.; Sauvanaud ., LL.; Doskocil, E.; Yaluris, G. (2011). Coke steam reforming in FCC regenerator: A new mastery over high coking feeds. Journal of Catalysis. 279(1):183-195. https://doi.org/10.1016/j.jcat.2011.01.020S183195279

    Production of High Quality Syncrude from Lignocellulosic Biomass

    Full text link
    [EN] Wood chips were hydrothermally treated in near critical point water in the presence of a catalyst to yield a raw biocrude, containing a wide range of organic components. This product was subsequently distilled to remove its heaviest fraction, which tends to yield chary products if heated above 350 degrees C. The biocrude obtained has an oxygen content of 12wt% and was subsequently hydrotreated to obtain a hydrocarbon stream. Varying the hydrotreatment operating conditions and catalyst yielded a deoxygenated syncrude which quality improved with operation severity. The hydroprocessed stream produced under very mild conditions can be further upgraded in conventional refinery operations while the stream produced after more severe hydrotreatment can be mixed with conventional diesel. This proof of concept was demonstrated with commercial hydrotreating catalysts, operating between 350 and 380 degrees C, 40 to 120bar pressure and 0.5 to 1h(-1) contact time.The authors thank Licella for material and financial support, as well as providing the biocrude used for the hydrotreating experiments. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Mathieu, Y.; Sauvanaud, LL.; Humphreys, L.; Rowlands, W.; Maschmeyer, T.; Corma Canós, A. (2017). Production of High Quality Syncrude from Lignocellulosic Biomass. ChemCatChem. 9(9):1574-1578. https://doi.org/10.1002/cctc.201601677S1574157899Huber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504Huber, G. W., & Corma, A. (2007). Synergien zwischen Bio- und Ölraffinerien bei der Herstellung von Biomassetreibstoffen. Angewandte Chemie, 119(38), 7320-7338. doi:10.1002/ange.200604504U.S. Department of Energy 2016.2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Volume 1: Economic Availability of Feedstocks. M. H. Langholtz B. J. Stokes L. M. Eaton (Leads) ORNL/TM-2016/160. Oak Ridge National Laboratory Oak Ridge TN. 448p. DOI:10.2172/1271651.Klein-Marcuschamer, D., & Blanch, H. W. (2015). Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE Journal, 61(9), 2689-2701. doi:10.1002/aic.14755Maitlis, P. M., & de Klerk, A. (2013). New Directions, Challenges, and Opportunities. Greener Fischer-Tropsch Processes for Fuels and Feedstocks, 337-358. doi:10.1002/9783527656837.ch16De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., … Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. doi:10.1039/c0ee00523aGoudriaan, F., & Peferoen, D. G. R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734. doi:10.1016/0009-2509(90)80164-aPeterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. doi:10.1039/b810100kToor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. doi:10.1016/j.energy.2011.03.013Oasmaa, A., & Czernik, S. (1999). Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy & Fuels, 13(4), 914-921. doi:10.1021/ef980272bElliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 178, 147-156. doi:10.1016/j.biortech.2014.09.132http://www.licella.com.au/commercial-demonstration-plant/.L. J.Humphreys (Ignite Energy Resources Pty Ltd) WO Pat. 2011/032202(A1) 2011.T.Maschmeyer L. J.Humphreys (Licella Pty Ltd) WO Pat. 2011/123897(A1) 2011.Wang, W., Yang, Y., Luo, H., Hu, T., & Liu, W. (2011). Amorphous Co–Mo–B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catalysis Communications, 12(6), 436-440. doi:10.1016/j.catcom.2010.11.001Monnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176-180. doi:10.1016/j.apcata.2010.04.035Kubička, D., & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2), 199-208. doi:10.1016/j.apcata.2009.10.034Huber, G. W., O’Connor, P., & Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 329, 120-129. doi:10.1016/j.apcata.2007.07.002Anthonykutty, J. M., Van Geem, K. M., De Bruycker, R., Linnekoski, J., Laitinen, A., Räsänen, J., … Lehtonen, J. (2013). Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 52(30), 10114-10125. doi:10.1021/ie400790vH. P.Ruyter J. H. J.Annee (Shell Oil Co) US Pat. no. 4670613A 1987.S. Jones et al. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading PNNL report 23227 2014.Baker, E. G., & Elliott, D. C. (1988). Catalytic Hydrotreating of Biomass-Derived Oils. Pyrolysis Oils from Biomass, 228-240. doi:10.1021/bk-1988-0376.ch021Kubička, D., & Horáček, J. (2011). Deactivation of HDS catalysts in deoxygenation of vegetable oils. Applied Catalysis A: General, 394(1-2), 9-17. doi:10.1016/j.apcata.2010.10.03

    Opportunities in upgrading biomass crudes

    Full text link
    [EN] An unconventional crude from biomass (biocrude) has been processed to yield a hydrocarbon stream that is not only fully processable in conventional refineries but is already close to the specification of commercial fuels such as transportation diesel. The upgrading of biocrude was carried out with a combination of hydrotreatment and catalytic cracking, yielding middle distillate as the main product.The authors thank Licella for material and financial support, as well as providing the biocrude used for the hydrotreating experiments. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Mathieu, Y.; Sauvanaud, LL.; Humphreys, L.; Rowlands, W.; Maschmeyer, T.; Corma Canós, A. (2017). Opportunities in upgrading biomass crudes. Faraday Discussions. 197:389-401. https://doi.org/10.1039/c6fd00208kS389401197U.S. Department of Energy. 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks. M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160. Oak Ridge National Laboratory, Oak Ridge, TN. 448ppP. M. Maitlis and A.de Klerk, Greener Fischer-Tropsch Processes for Fuels and Feedstocks, Wiley, 2013, ch. 16De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., … Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. doi:10.1039/c0ee00523aGoudriaan, F., & Peferoen, D. G. R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734. doi:10.1016/0009-2509(90)80164-aPeterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. doi:10.1039/b810100kToor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. doi:10.1016/j.energy.2011.03.013Oasmaa, A., & Czernik, S. (1999). Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy & Fuels, 13(4), 914-921. doi:10.1021/ef980272bhttp://www.licella.com.au/commercial-demonstration-plant/Bridgwater, A. V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1-2), 5-47. doi:10.1016/0926-860x(94)80278-5De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Way, N. W. J., Schaverien, C. J., & Hogendoorn, J. A. (2010). Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Applied Catalysis B: Environmental, 96(1-2), 57-66. doi:10.1016/j.apcatb.2010.01.033Wang, C., Li, M., & Fang, Y. (2016). Coprocessing of Catalytic-Pyrolysis-Derived Bio-Oil with VGO in a Pilot-Scale FCC Riser. Industrial & Engineering Chemistry Research, 55(12), 3525-3534. doi:10.1021/acs.iecr.5b03008Fogassy, G., Thegarid, N., Schuurman, Y., & Mirodatos, C. (2012). The fate of bio-carbon in FCC co-processing products. Green Chemistry, 14(5), 1367. doi:10.1039/c2gc35152hRezaei, P. S., Shafaghat, H., & Daud, W. M. A. W. (2014). Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Applied Catalysis A: General, 469, 490-511. doi:10.1016/j.apcata.2013.09.036Hughes, R., Hutchings, G. J., Koon, C. L., McGhee, B., Snape, C. E., & Yu, D. (1996). Deactivation of FCC catalysts using n-hexadecane feed with various additives. Applied Catalysis A: General, 144(1-2), 269-279. doi:10.1016/0926-860x(96)00106-8Huber, G. W., O’Connor, P., & Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 329, 120-129. doi:10.1016/j.apcata.2007.07.002Anthonykutty, J. M., Van Geem, K. M., De Bruycker, R., Linnekoski, J., Laitinen, A., Räsänen, J., … Lehtonen, J. (2013). Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 52(30), 10114-10125. doi:10.1021/ie400790vS. Jones , Y.Zu, D.Anderson, R.Allen, D.Elliot, A.Schmidt, K.Albrecht, T.Hart, M.Butcher, C.Drennan, L.Snowden-Swan, R.Davis and C.Kinchin, PNNL report 23227, March 2014Corma, A., González-Alfaro, V., & Orchillés, A. . (2001). Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil. Journal of Catalysis, 200(1), 34-44. doi:10.1006/jcat.2001.3181CORMA, A., & ORTEGA, F. (2005). Influence of adsorption parameters on catalytic cracking and catalyst decay. Journal of Catalysis, 233(2), 257-265. doi:10.1016/j.jcat.2005.04.02

    Crude oil to chemicals: light olefins from crude oil

    Full text link
    [EN] The possibility to fulfill the increasing market demand and producers' needs in processing crude oil, a cheap and universally available feedstock, to produce petrochemicals appears to be a very attractive strategy. Indeed, many petrochemicals are produced as side streams during crude oil refining, which primary goal remains transportation fuel production. Availability of some critical feedstocks may then depend on local refining policy. In order to improve flexibility, it has been proposed to directly crack crude oil to produce petrochemicals, in particular light olefins (ethylene, propylene, butenes), using technologies derived from fluid catalytic cracking. This paper attempts to review the main research works done on the topic in the literature in the last five decades, focussing on process as well as catalyst technology, with a special interest for fluid catalytic cracking (FCC) based technology that can be used towards maximizing chemicals from crude oil. Factors investigated include use of severe cracking conditions, on-purpose additives (from ZSM5 to more exotic, metal doped additives), recycle streams and multiple riser systems.The authors thank Saudi Aramco for material and financial support. Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio (2010-Multicat, CSD-2009-0050), MAT2012-31657, CTQ2015-70126-R (MINECO/FEDER), by the European Union through ERC-AdG-2014-671093-SynCatMatch and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Corma Canós, A.; Corresa Mateu, E.; Mathieu ., Y.; Sauvanaud ., LL.; Al-Bogami, S.; Al-Ghrami, M.; Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology. 7(1):12-46. https://doi.org/10.1039/c6cy01886fS12467

    Co-processing of lignocellulosic biocrude with petroleum gas oils

    Full text link
    [EN] A biocrude was obtained via the catalytic hydrothermal treatment of lignocellulosic biomass. This was further co-hydroprocessed with Straight Run Gas Oil (SRGO) under desulphurization conditions. Amounts of biocrude of up to 20 wt% could be co-processed, while maintaining a diesel stream density within the specifications contained in the road diesel regulation EN 590. The changes in the diesel properties associated with an increasing amount of biocrude were not a simple linear function of biocrude content. Rather, some positive correlations seem to exist between biocrude and SRGO at low biocrude contents, possibly due to intramolecular hydrogen transfer, yielding a diesel stream with a better quality than would be obtained from simply mixing hydrotreated pure streams in a 80% to 20% ratio.The authors thank Licella for providing the Biocrude and financial support. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severn Ochoa" (SEV 2016-0683), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Sauvanaud, LL.; Mathieu, Y.; Corma Canós, A.; Humphreys, L.; Rowlands, W.; Maschmeyer, T. (2018). Co-processing of lignocellulosic biocrude with petroleum gas oils. Applied Catalysis A General. 551:139-145. https://doi.org/10.1016/j.apcata.2017.09.029S13914555

    Green Diesel from Kraft Lignin in Three Steps

    Full text link
    Precipitated kraft lignin from black liquor was converted into green diesel in three steps. A mild Ni-catalyzed transfer hydrogenation/hydrogenolysis using 2-propanol generated a lignin residue in which the ethers, carbonyls, and olefins were reduced. An organocatalyzed esterification of the lignin residue with an insitu prepared tall oil fatty acid anhydride gave an esterified lignin residue that was soluble in light gas oil. The esterified lignin residue was coprocessed with light gas oil in a continous hydrotreater to produce a green diesel. This approach will enable the development of new techniques to process commercial lignin in existing oil refinery infrastructures to standardized transportation fuels in the future.RenFuel AB thanks the Swedish Energy Agency for financial support.Löfstedt, J.; Dahlstrand, C.; Orebom, A.; Meuzelaar, G.; Sawadjoon, S.; Galkin, MV.; Agback, P.... (2016). Green Diesel from Kraft Lignin in Three Steps. ChemSusChem. 9(12):1392-1396. doi:10.1002/cssc.201600172S1392139691
    corecore