5 research outputs found

    Phytochromes in Agrobacterium fabrum

    Get PDF
    The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes

    Ultrafast proton-coupled isomerization in the phototransformation of phytochrome

    Get PDF
    The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore’s pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes

    The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP

    Get PDF
    Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence in the near-infrared region. These applications require optimization of the originally low fluorescence quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative excited state decay channels are yet poorly understood. In this work we employed resonance Raman and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer by ~34% is achieved. The present results have important implications for future design strategies of biofluorophores.DFG, 221545957, SFB 1078: Proteinfunktion durch ProtonierungsdynamikDFG, 53182490, EXC 314: Unifying Concepts in Catalysi

    Structural snapshot of a bacterial phytochrome in its functional intermediate state

    Get PDF
    Phytochromes are modular photoreceptors of plants, bacteria and fungi that use light as a source of information to regulate fundamental physiological processes. Interconversion between the active and inactive states is accomplished by a photoinduced reaction sequence which couples the sensor with the output module. However, the underlying molecular mechanism is yet not fully understood due to the lack of structural data of functionally relevant intermediate states. Here we report the crystal structure of a Meta-F intermediate state of an Agp2 variant from Agrobacterium fabrum. This intermediate, the identity of which was verified by resonance Raman spectroscopy, was formed by irradiation of the parent Pfr state and displays significant reorientations of almost all amino acids surrounding the chromophore. Structural comparisons allow identifying structural motifs that might serve as conformational switch for initiating the functional secondary structure change that is linked to the (de-)activation of these photoreceptors

    Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins

    Get PDF
    Abstract Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs
    corecore