151 research outputs found
Dip-coating of suspensions
Withdrawing a plate from a suspension leads to the entrainment of a coating
layer of fluid and particles on the solid surface. In this article, we study
the Landau-Levich problem in the case of a suspension of non-Brownian particles
at moderate volume fraction . We observe different regimes
depending on the withdrawal velocity , the volume fraction of the suspension
, and the diameter of the particles . Our results exhibit three
coating regimes. (i) At small enough capillary number , no particles are
entrained, and only a liquid film coats the plate. (ii) At large capillary
number, we observe that the thickness of the entrained film of suspension is
captured by the Landau-Levich law using the effective viscosity of the
suspension . (iii) At intermediate capillary numbers, the situation
becomes more complicated with a heterogeneous coating on the substrate. We
rationalize our experimental findings by providing the domain of existence of
these three regimes as a function of the fluid and particles properties
A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts
© 2018 Author(s). Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors
Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method
© 2017 The Author(s). Background: Red blood cells (RBCs) deform significantly and repeatedly when passing through narrow capillaries and delivering dioxygen throughout the body. Deformability of RBCs is a key characteristic, largely governed by the mechanical properties of the cell membrane. This study investigated RBC mechanical properties using atomic force microscopy (AFM) with the aim to develop a coarse-grained particle method model to study for the first time RBC indentation in both 2D and 3D. This new model has the potential to be applied to further investigate the local deformability of RBCs, with accurate control over adhesion, probe geometry and position of applied force. Results: The model considers the linear stretch capacity of the cytoskeleton, bending resistance and areal incompressibility of the bilayer, and volumetric incompressibility of the internal fluid. The model's performance was validated against force-deformation experiments performed on RBCs under spherical AFM indentation. The model was then used to investigate the mechanisms which absorbed energy through the indentation stroke, and the impact of varying stiffness coefficients on the measured deformability. This study found the membrane's bending stiffness was most influential in controlling RBC physical behaviour for indentations of up to 200 nm. Conclusions: As the bilayer provides bending resistance, this infers that structural changes within the bilayer are responsible for the deformability changes experienced by deteriorating RBCs. The numerical model presented here established a foundation for future investigations into changes within the membrane that cause differences in stiffness between healthy and deteriorating RBCs, which have already been measured experimentally with AFM
Ultrafine particle transport and deposition in a large scale 17-generation lung model
© 2017 Elsevier Ltd To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region
SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries
© 2016 The Author(s). Background: Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. Methods: An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Results: Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. Conclusions: A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures
Polydisperse Microparticle Transport and Deposition to the Terminal Bronchioles in a Heterogeneous Vasculature Tree
© 2018, The Author(s). The atmospheric particles from different sources, and the therapeutic particles from various drug delivery devices, exhibit a complex size distribution, and the particles are mostly polydisperse. The limited available in vitro, and the wide range of in silico models have improved understanding of the relationship between monodisperse particle deposition and therapeutic aerosol transport. However, comprehensive polydisperse transport and deposition (TD) data for the terminal airways is still unavailable. Therefore, to benefit future drug therapeutics, the present numerical model illustrates detailed polydisperse particle TD in the terminal bronchioles for the first time. Euler-Lagrange approach and Rosin-Rammler diameter distribution is used for polydisperse particles. The numerical results show higher deposition efficiency (DE) in the right lung. Specifically, the larger the particle diameter (dp > 5 μm), the higher the DE at the bifurcation area of the upper airways is, whereas for the smaller particle (dp < 5 μm), the DE is higher at the bifurcation wall. The overall deposition pattern shows a different deposition hot spot for different diameter particle. These comprehensive lobe-specific polydisperse particle deposition studies will increase understanding of actual inhalation for particle TD, which could potentially increase the efficiency of pharmaceutical aerosol delivery at the targeted position of the terminal airways
Spin current shot noise as a probe of interactions in mesoscopic systems
It is shown that the spin resolved current shot noise can probe attractive or
repulsive interactions in mesoscopic systems. This is illustrated in two
physical situations : i) a normal-superconducting junction where the spin
current noise is found to be zero, and ii) a single electron transistor (SET),
where the spin current noise is found to be Poissonian. Repulsive interactions
may also lead to weak attractive correlations (bunching of opposite spins) in
conditions far from equilibrium. Spin current shot noise can be used to measure
the spin relaxation time , and a set-up is proposed in a quantum dot
geometry.Comment: 5 pages, 4 Figures, revised version, added reference
Damping of liquid sloshing by foams
When a container is set in motion, the free surface of the liquid starts to
oscillate or slosh. Such effects can be observed when a glass of water is
handled carelessly and the fluid sloshes or even spills over the rims of the
container. However, beer does not slosh as readily as water, which suggests
that foam could be used to damp sloshing. In this work, we study experimentally
the effect on sloshing of a liquid foam placed on top of a liquid bath. We
generate a monodisperse two-dimensional liquid foam in a rectangular container
and track the motion of the foam. The influence of the foam on the sloshing
dynamics is experimentally characterized: only a few layers of bubbles are
sufficient to significantly damp the oscillations. We rationalize our
experimental findings with a model that describes the foam contribution to the
damping coefficient through viscous dissipation on the walls of the container.
Then we extend our study to confined three-dimensional liquid foam and observe
that the behavior of 2D and confined 3D systems are very similar. Thus we
conclude that only the bubbles close to the walls have a significant impact on
the dissipation of energy. The possibility to damp liquid sloshing using foam
is promising in numerous industrial applications such as the transport of
liquefied gas in tankers or for propellants in rocket engines.Comment: 17 pages, accepted in Physics of Fluid
A multiscale coarse grained model for simulating mechanical responses of plant food tissues
Plant food materials are highly sensitive to the external mechanical responses. Simulation of the material behaviour under mechanical loading is important in many engineering applications. Several researchers have used tissue based (macroscale) and cellular based (microscale) numerical models to assess the plant material behaviour. In doing so, generally, finite element modelling and meshfree based discretization strategies are commonly used and the latter has been proven to be more flexible, accurate and more robust in numerical simulations. This study aims to develop a coarse grained (CG) model for a cellular system of plant food tissue in microscale. The basic idea here is to maintain the accuracy given by the cellular scale while minimizing the computational cost for the simulations. The developed model accounts for the deformation of a coarse grained system under an external mechanical load. In order to represent the viscoelastic behaviour of a plant food material, we use a spring damper system connected to coarse grained beads. The model predictions show a satisfactory agreement with the morphological changes given by the cellular model. This developed CG model has laid a solid foundation for the further development of the multiscale model for the plant tissue
- …