34 research outputs found

    Safe practices for legitimate medical use of opioids: a study of trends in opioids prescription over a decade

    Get PDF
    Background: An unwavering availability of opioids is crucial for effective pain and palliative care and for managing opioid dependence. This study aims to study the pattern of morphine consumption and the use of safety protocols for prescribing opioids in a tertiary cancer hospital in India. Patients and methods: We studied the medical and pharmacy records retrospectively, to investigate the pattern of oral Morphine consumption and distribution from 2008 to 2020. Results: The number of new cancer patients visiting the hospital, the number of re-visits of these patients, and inpatient admissions to palliative care service increased unswervingly from 2008 to 2019 with a sharp fall in 2020 owing to the COVID pandemic. Annual oral morphine consumption showed a steady increase from 4.89 kgs in 2008 to 11.53 kgs in 2019 with a fall to 5.68 kgs in 2020. However, the trend for oral morphine dispensed per patient per visit showed a mild increase from 1.1 gram in 2008 to 2.06 grams in 2012, followed by a gradual decline to 0.89 grams in 2020. Opioid diversion incidence was found to be zero. Conclusions: Comprehensive interventions alongside safety protocols for prescriptions of opioids and effective integration of palliative care can help prevent opioid use disorders

    Understanding type 1 diabetes through proteomics

    Get PDF
    Auto-immunity against pancreatic beta-cells leads to an absolute shortage of the hormone insulin, resulting in hyperglycemia and the onset of type 1 diabetes (T1D). Proteomic approaches have been used to elucidate the mechanisms of beta-cell dysfunction and death. Areas covered: In the present review, we discuss discoveries in the beta-cell proteome that have contributed to better insights in the role of the beta-cell in T1D. Techniques, such as 2D-DIGE and MALDI imaging, together with new approaches for sample preparation, including laser capture microdissection and immunopeptidomics, have resulted in novel mechanistic insights in the pathogenesis of T1D. We describe how proteomic studies in beta-cell lines as well as isolated islets from animal models and humans have discovered intracellular signaling pathways leading to beta-cell destruction, the generation of neo-antigens through post-translational modifications of beta-cell antigens as well as better biomarkers of disease progression. Expert commentary: Proteomics has contributed to the discovery of beta-cell neo-autoantigen generation through post-translational modifications, hybrid insulin peptide formation and the generation of defective ribosomal gene products. These concepts are revolutionizing our insights in the pathogenesis of T1D, acknowledging a central role for the beta-cell in its own destruction.status: publishe

    Newer regional analgesia interventions (fascial plane blocks) for breast surgeries: Review of literature

    No full text
    Surgical resection of the primary tumour with axillary dissection is one of the main modalities of breast cancer treatment. Regional blocks have been considered as one of the modalities for effective perioperative pain control. With the advent of ultrasound, newer interventions such as fascial plane blocks have been reported for perioperative analgesia in breast surgeries. Our aim is to review the literature for fascial plane blocks for analgesia in breast surgeries. The research question for initiating the review was 'What are the reported newer regional anaesthesia techniques (fascial plane blocks) for female patients undergoing breast surgery and their analgesic efficacy?.' The participants, intervention, comparisons, outcomes and study design were followed. Due to the paucity of similar studies and heterogeneity, the assessment of bias, systematic review or pooled analysis/meta-analysis was not feasible. Of the 989 manuscripts, the present review included 28 manuscripts inclusive of all types of published manuscripts. 15 manuscripts directly related to the administration of fascial plane blocks for breast surgery across all type of study designs and cases were reviewed for the utility of fascial plane blocks in breast surgeries. Interfascial blocks score over regional anaesthetic techniques such as paravertebral block as they have no risk of sympathetic blockade, intrathecal or epidural spread which may lead to haemodynamic instability and prolonged hospital stay. This review observed that no block effectively covers the whole of breast and axilla, thus a combination of blocks should be used depending on the site of incision and extent of surgical resection

    Anesthesia management in a patient with systemic lupus erythematosus and left ventricular thrombus

    No full text
    Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with heterogeneous presentation. We discuss the perioperative management of a female having SLE with left ventricular thrombus who was scheduled for bilateral femoral head core decompression. Warfarin was stopped preoperatively in order to bring down international normalized ratio <1.5 and restarted postoperatively on next day

    Advances in Skin Regeneration Using Tissue Engineering

    No full text
    Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application

    Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation

    No full text
    <p>Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent <i>in silico</i> protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at −219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation.</p

    Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review

    No full text
    Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts

    Early differences in islets from prediabetic NOD mice: combined microarray and proteomic analysis

    No full text
    Type 1 diabetes is an endocrine disease where a long preclinical phase, characterised by immune cell infiltration in the islets of Langerhans, precedes elevated blood glucose levels and disease onset. Although several studies have investigated the role of the immune system in this process of insulitis, the importance of the beta cells themselves in the initiation of type 1 diabetes is less well understood. The aim of this study was to investigate intrinsic differences present in the islets from diabetes-prone NOD mice before the onset of insulitis.status: publishe
    corecore