8 research outputs found

    Interventions to reduce pesticide exposure from the agricultural sector in Africa: a workshop report

    Get PDF
    Despite the fact that several cases of unsafe pesticide use among farmers in different parts of Africa have been documented, there is limited evidence regarding which specific interventions are effective in reducing pesticide exposure and associated risks to human health and ecology. The overall goal of the African Pesticide Intervention Project (APsent) study is to better understand ongoing research and public health activities related to interventions in Africa through the implementation of suitable target-specific situations or use contexts. A systematic review of the scientific literature on pesticide intervention studies with a focus on Africa was conducted. This was followed by a qualitative survey among stakeholders involved in pesticide research or management in the African region to learn about barriers to and promoters of successful interventions. The project was concluded with an international workshop in November 2021, where a broad range of topics relevant to occupational and environmental health risks were discussed such as acute poisoning, street pesticides, switching to alternatives, or disposal of empty pesticide containers. Key areas of improvement identified were training on pesticide usage techniques, research on the effectiveness of interventions targeted at exposure reduction and/or behavioral changes, awareness raising, implementation of adequate policies, and enforcement of regulations and processes

    Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion

    Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes

    No full text
    Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) is an exotic predator widely used in biological control programs for the red spider mite Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) in East Africa. However, little is known about the cues mediating this prey/predator interaction. Here, we performed behavioral assays to test the involvement of visual, vibratory, and olfactory cues using a combination of dead/living insects enclosed in either perforated or non-perforated transparent/opaque capsules. We monitored insect responses with a video tracking system and analyzed the data with Ethovision software. Our results showed avoidance behavior of T. evansi in the presence of live P. longipes through visual, vibratory, and olfactory cues. P. longipes was attracted by vibratory and olfactory cues emitted by T. evansi. The composition of volatiles from T. evansi was identified by GC/MS as methyl salicylate (MeSA), linalool, beta-caryophyllene, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, and octadecanoic acid. Our behavioral assays with predatory mites in a Y-tube olfactometer revealed that among the identified volatiles, only MeSA, linalool, and MeSA + linalool attracted P. longipes. The implications of these findings for the control of T. evansi are discussed
    corecore