3 research outputs found

    Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis.

    Get PDF
    Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10 <sup>-10</sup> ). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression r <sub>g</sub> = 0.63, insomnia r <sub>g</sub> = 0.47), physical health (overweight r <sub>g</sub> = 0.19, waist-to-hip ratio r <sub>g</sub> = 0.32), smoking (r <sub>g</sub> = 0.54), cognitive ability (intelligence r <sub>g</sub> = -0.40), educational attainment (years of schooling r <sub>g</sub> = -0.46) and reproductive traits (age at first birth r <sub>g</sub> = -0.58, father's age at death r <sub>g</sub> = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    No full text
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1–4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction

    Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease

    No full text
    corecore