5 research outputs found

    Simulation of an experimental database of infrared spectra of complex gaseous mixtures for detecting specific substances. The case of drug precursors

    Get PDF
    This work is motivated by the need to develop suitable databases in absence of real experimental data, for instance when spectra measured with a newly developed instrumentation on real samples are not available yet. This notwithstanding, in fact, the realization of the physical project should be addressed by a starting database, also invaluable in order to test its effectiveness. In this article we face the issue of simulating gas mixtures spectra for the development of a new sensor for External Cavity-Quantum Cascade Laser Photoacoustic Spectroscopy (EC-QCLPAS) starting from literature FT-IR spectra of pure components: a dataset is realized suitable to realistically represent the ensemble of spectra of the gas mixtures of interest. The informative data deriving from the literature spectra were combined with the stochastic component extracted from a sample spectrum recorded with a prototype instrument, allowing us to build a matrix containing thousands of simulated spectra of gaseous mixtures, accounting for the presence of different components at different concentrations. Signal processing and experimental design techniques were used along the whole path leading to the dataset of simulated spectra. In particular, the goal of the construction of the database lies in the development of a final system to detect drug precursors in the vapour phase. The comparison of some EC-QCLPAS spectra with the corresponding simulated signals confirms the validity of the proposed approach

    68Ga-DOTA chelate, a novel imaging agent for assessment of myocardial perfusion and infarction detection in a rodent model

    Get PDF
    BackgroundMagnetic resonance imaging (MRI) with Gadolinium 1,4,7,10-tetraazacyclododecane-N′,N″,N′′′,N″″-tetraacetic acid (Gd-DOTA) enables assessment of myocardial perfusion during first-pass of the contrast agent, while increased retention can signify areas of myocardial infarction (MI). We studied whether Gallium-68-labeled analog, 68Ga-DOTA, can be used to assess myocardial perfusion on positron emission tomography/computed tomography (PET/CT) in rats, comparing it with 11C-acetate.MethodsRats were studied with 11C-acetate and 68Ga-DOTA at 24 hours after permanent ligation of the left coronary artery or sham operation. One-tissue compartmental models were used to estimate myocardial perfusion in normal and infarcted myocardium. After the PET scan, hearts were sectioned for autoradiographic detection of 68Ga-DOTA distribution.Results11C-acetate PET showed perfusion defects and histology showed myocardial necrosis in all animals after coronary ligation. Kinetic modeling of 68Ga-DOTA showed significantly higher k1 values in normal myocardium than in infarcted areas. There was a significant correlation (r = 0.82, P = 0.001) between k1 values obtained with 68Ga-DOTA and 11C-acetate. After 10 minutes of tracer distribution, the 68Ga-DOTA concentration was significantly higher in the infarcted than normal myocardium on PET imaging and autoradiography.ConclusionsOur results indicate that acute MI can be detected as reduced perfusion, as well as increased late retention of 68Ga-DOTA.</p

    Folate Receptor β Targeted PET Imaging of Macrophages in Autoimmune Myocarditis

    Get PDF
    Rationale: Currently available imaging techniques have limited specificity for the detection of active myocardial inflammation. Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-N,N′,N″-triacetic acid conjugated folate (18F-FOL) is a positron emission tomography (PET) tracer targeting folate receptor β (FR-β) that is expressed on activated macrophages at sites of inflammation. We evaluated 18F-FOL PET for the detection of myocardial inflammation in rats with autoimmune myocarditis and studied expression of FR-β in human cardiac sarcoidosis specimens. Methods: Myocarditis was induced by immunizing rats (n = 18) with porcine cardiac myosin in complete Freund’s adjuvant. Control rats (n = 6) were injected with Freund’s adjuvant alone. 18F-FOL was intravenously injected followed by imaging with a small animal PET/computed tomography (CT) scanner and autoradiography. Contrast-enhanced high-resolution CT or 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) PET images were used for co-registration. Rat tissue sections and myocardial autopsy samples of 6 patients with cardiac sarcoidosis were studied for macrophages and FR-β. Results: The myocardium of 10 out of 18 immunized rats showed focal macrophage-rich inflammatory lesions with FR-β expression occurring mainly in M1-polarized macrophages. PET images showed focal myocardial 18F-FOL uptake co-localizing with inflammatory lesions (SUVmean, 2.1 ± 1.1), whereas uptake in the remote myocardium of immunized rats and controls was low (SUVmean, 0.4 ± 0.2 and 0.4 ± 0.1, respectively; P </p
    corecore