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ABSTRACT 

This work is motivated by the need to develop suitable databases in absence of real experimental 

data, for instance when spectra measured with a newly developed instrumentation on real samples 

are not available yet. This notwithstanding, in fact, the realization of the physical project should be 

addressed by a starting database, also invaluable in order to test its effectiveness. In this article we 

face the issue of simulating gas mixtures spectra for the development of a new sensor for External 

Cavity-Quantum Cascade Laser Photoacoustic Spectroscopy (EC-QCLPAS) starting from literature 

FT-IR spectra of pure components: a dataset is realized suitable to realistically represent the 

ensemble of spectra of the gas mixtures of interest. The informative data deriving from the literature 

spectra were combined with the stochastic component extracted from a sample spectrum recorded 

with a prototype instrument, allowing us to build a matrix containing thousands of simulated spectra 

of gaseous mixtures, accounting for the presence of different components at different 

concentrations. Signal processing and experimental design techniques were used along the whole 

path leading to the dataset of simulated spectra. In particular, the goal of the construction of the 

database lies in the development of a final system to detect drug precursors in the vapour phase. The 

comparison of some EC-QCLPAS spectra with the corresponding simulated signals confirms the 

validity of the proposed approach. 

 

Keywords: spectra simulation; experimental design; Fast Wavelet Transform; FT-IR; Laser 

Photoacoustic Spectroscopy 
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1. INTRODUCTION 

The increasing need for portable sensors suitable to detect dangerous or illegal chemical substances 

and requiring fast in situ analysis, forces to develop sophisticated systems, exploiting at best the 

huge potentialities recently made available by precision mechanics, optics, and electronics. The 

realization of advanced detection systems, however, is often based on sensors whose development 

is still in progress and whose response could be, therefore, at least partly unknown. For example, 

the implementation of a new sensor for the detection of a particular target molecule would require 

that its response to the target and to possible interfering molecules is already known, but it often 

happens that experimental data are not available yet, the actual development of the physical device 

being still in progress. A preliminary database on which to work could be also necessary when the 

chemical substances of interest are hard to handle, due to their toxicity, to hazards, or to legal 

issues. 

The challenging task of building a suitable starting database can be faced by following different 

strategies, depending on the specific situation. In particular, in this article we face the issue of 

simulating gas mixtures spectra for the development of a new sensor for External Cavity-Quantum 

Cascade Laser Photoacoustic Spectroscopy (EC-QCLPAS) working in the Mid Infrared (MIR) 

spectral range. From a literature survey, a first possible way to obtain the spectral responses consists 

in calculating them by physico-chemical simulations based on the chemical structures. Ab initio and 

semi-empirical quantum mechanical methods are widely used to this purpose, constituting 

invaluable tools in modern vibrational spectroscopy. However, ab initio calculations are very time 

consuming and require powerful computers. For this reason, similar methods cannot be adopted 

routinely, even for compounds of moderate complexity, e.g., of 100 – 300 Da: a much more 

practical approach lies in the use of semi-empirical methods [1-3]. A further alternative procedure 

has been followed by Babkov et al. [4], which simulated vibrational spectra by the method of 

fragments [5]. Such a method is applicable also to the simulation of the vibrational spectra of large 
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molecules [6,7]. The choice of computing the spectra using quantum mechanical methods presents 

in all cases important drawbacks, mainly due to the approximations affecting calculations and to the 

noise issue: a proper simulation should be suitable to represent not only the chemical information 

(pure spectrum), but also the contribution of the instrumental noise to the final signal shape. 

Moreover, in case there is the need to simulate the spectrum of mixtures of different substances, the 

excessive use of approximations could lead to spectral responses that are far from the real ones, not 

to mention the inherent computational load. 

A literature survey has shown that a few attempts are reported in which the simulation of single gas 

spectra or spectra of specific gas mixtures takes also into account the contribution of instrumental 

noise and of background signal variations [8,9]. Huang et al. [10] developed a simulation model 

based on the infrared transmission theory and on the knowledge of background and interference 

spectra. Sulub et al. [11] used previously measured molar absorptivities and solvent displacement 

factors, computing synthetic spectra using experimentally recorded background signals. Bak 

proposed an interesting procedure based on Principal Component Regression to simulate spectra of 

a single gas (CO) at varying concentrations, temperatures, and pathlengths [12, 13]. Other 

approaches have been followed by Corsi et al. [14], that developed a simulation approach to reveal 

VOC in air, and by Gao et al. [15], who proposed a method to simulate spectra of polluting gases in 

a complex environment. 

In this work we deal with the issue of simulating spectra in the MIR range, for the development of a 

new EC-QCLPAS sensor [8, 9, 16], devoted to the identification of vapours of drug precursors 

(target molecules) in air, considering a high variety of possible environmental conditions [17, 18]. 

The MIR spectral range has been chosen since most chemicals, such as the target gases selected for 

our purposes, exhibit strong characteristic rotovibrational absorption bands in this wavenumber 

interval [19]. Due to the need to account for the possible presence of a large number of chemical 

species mixed in varying amounts, we started from spectra of pure substances taken from literature 
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databases, that were considered as “building blocks” of mixtures, to simulate the complex spectral 

profiles of interest which, to a first approximation, will be obtained by the sensor under 

development. In addition to the target molecules, i.e., the drug precursors, other components of the 

gaseous mixtures were the most common interfering species and the main components of air. 

Reasonable concentration ranges were considered for each species. 

Noteworthy, the bulk of the developed procedure can be adapted to deal with a number of different 

situations. Moreover, it should be also noticed that, although the gas sensor considered here 

operates in the MIR spectral range, the proposed simulation methodology can be easily transferred 

to any other kind of spectroscopic data. 

The approach proposed here requires some basic issues to be addressed, mainly involving signal 

processing and experimental design methodologies [20]. The gas spectra were first denoised by 

means of a Fast Wavelet Transform (FWT) [21-23] based algorithm. Then, a procedure was 

developed to multiply the spectra of the pure components by the corresponding concentration 

values, in order to operate only on the actual absorption bands. The noise structure of the EC-

QCLPAS was analyzed using a spectrum recorded on methanol with a prototype instrument, and 

added to the “clean” spectra of the simulated mixtures. This approach allowed us to build a matrix 

containing the simulated EC-QCLPAS spectra of thousands of gas mixtures, which was further 

used [24] for the definition of the optimal spectral working range and even for identification of the 

single most informative wavenumbers within this range. In order to preliminarily test the proposed 

approach, the whole procedure has been applied to simulate the experimental spectra acquired with 

prototypes of the instrument on two sample mixtures. 
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2. DATASETS 

2.1. Literature FT-IR Spectra 

Two literature databases, namely PNNL [25] (Pacific Northwest National Laboratory) and 

HITRAN [26, 27] (HIgh-resolution TRANsmission molecular absorption database, Atomic and 

Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics) were exploited for 

extraction of spectra. The most part of the spectral data was taken from the PNNL database, and 

consisted of FT-IR spectra acquired at 298 K, at wavenumbers ranging from 6500 to 600 cm
-1

, 

0.0603 cm
-1

 spectral resolution, corresponding to 97902 data. Moreover, a few spectra have been 

extracted from the HITRAN database, referred to 296 K, within a wavenumber range from 3174 to 

749 cm
-1

 at a resolution of 0.076 cm
-1

. 

As a whole, for our specific needs, the spectra of 33 chemical species were considered, divided into 

three categories: 

 4 target spectra, namely 1-phenyl-2-propanone, acetic anhydride, ephedrine and safrole 

(concentration range: 0.02 - 1 ppm) 

 20 interfering species (pollutants) 

 9 air components. 

Table 1 reports the list of the considered pollutants, together with the relevant upper concentration 

limits (the lower limit was set to 1 ppb for all of them), and Table 2 reports the air components, 

along with their typical and maximum concentration values, as inferred from literature [8, 28]. The 

list of pollutants was defined taking into account both the similarities of the spectral signatures with 

those of target gases and the most likely environmental conditions. 
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2.2. Spectra measured with EC-QCL-PAS prototype instrument 

Real gas spectra have been recorded by a prototype of the EC-QCL-PAS instrument, in order to 

estimate the actual noise contribution and to collect preliminary experimental spectra suitable to test 

the validity of the developed procedure. The laser photoacoustic (LPAS) sensor (Figure 1) is 

composed by a cantilever enhanced photoacoustic cell (PA-cell) from Gasera Ltd. and by two 

different external cavity quantum cascade laser (EC-QCL) sources, i.e., a continuous wave version 

and a pulsed one. The continuous wave laser source was a 21095-MHF EC-QCL (Daylight 

Solutions) laser with about 50 mW average power over the tuning range (1020 – 1100 cm
-1

). The 

pulsed laser source was a TLS-11096 (Daylight Solutions) laser with on average 5 mW effective 

power (effective duty cycle 5 %) over the tuning range (1030 – 1110 cm
-1

). The EC-QCL system 

creates a collimated laser beam with relatively high optical output power, in the MIR region. 

Continuous wave QCL should be kept at a constant temperature; in particular, the considered device 

was thermostated at 23 °C by water cooling system. The laser power is modulated mechanically, by 

a rotating chopper wheel, at a frequency of 60 Hz. The collimated and modulated laser beam travels 

through the cylindrically shaped photoacoustic cell, which is 9.5 cm in length, 4 mm in diameter 

and is sealed by two windows at the ends. The sample gas absorbs the modulated infrared radiation 

and it heats and cools down periodically. The generated pressure wave is detected by the cantilever, 

whose position is measured by the laser interferometer. The amplitude of the cantilever oscillations 

at the modulation frequency corresponds to the intensity of the photoacoustic signal. 

A first spectrum was measured using the continuous wave laser source, at 1 bar pressure, on 90 ppm 

CH3OH diluted in nitrogen, and was used to estimate the noise structure of the EC-QCL-PAS 

signals. A second spectrum was measured on the same sample using the pulsed laser source. These 

two spectra were then used to estimate the corresponding values of the experimental correction 

factor, given by the cell response and absolute laser power coefficients, which is the constant 

multiplication factor necessary to convert the photoacoustic intensity into the corresponding 
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absorbance values. The two experimental correction factors were then used to convert two spectra 

used to perform the preliminary test of the proposed approach. They were measured on: 

 a binary mixture composed by 1.6 ppm CH3OH and 1 ppm NH3, diluted in nitrogen at 1 bar 

pressure, measured with a spectral resolution equal to 0.1 cm
-1

 with the continuous wave laser 

source; 

 a quaternary mixture composed by H2O (10000 ppm), CO2 (380 ppm), CH3OH (11 ppm) and 

safrole (11 ppm), diluted in nitrogen at 950 mbar pressure, measured with a spectral 

resolution equal to 0.5 cm
-1

 with the pulsed laser source. 

Due to the low intensity of both laser sources at the spectra extremes, only the 1038-1098 cm
-1

 

range was considered for further elaborations. 

 

3. ALGORITHMS 

All the calculations, both for the elaboration of the data and for the creation of the algorithms, were 

performed in Matlab 7 
®

 language, running on a desktop PC with Windows 7 – 64 bit 
®
, equipped 

with an Intel Core 
®
 i7-2600 CPU @ 3.40 GHz processor and 4.00 GB RAM. Moreover, some of 

the subroutines available in the Wavelet Toolbox ver. 4.6 (The MathWorks, Inc.) and in the PLS-

Toolbox ver. 7.0 (Eigenvector Research, Inc.) were employed. 

3.1. Importation and pre-processing of the literature spectra 

The step by step procedure adopted for processing the spectra extracted from the literature 

databases is described in details hereafter. 

3.1.1. Importing spectra 

Spectra stored in different databases and recorded with different instruments possess different 

characteristics. For this reason, an algorithm to import spectral data with varying wavenumber 
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ranges, resolutions and input file formats has been developed. All the imported literature spectra 

have been converted into a common format and structure. In order to denoise the database spectra at 

best, these have been imported using all the original points, exploiting in this manner the highest 

possible resolution. 

3.1.2. Denoising 

Different noise structures affect the literature spectra, and are also quite reasonably diverse from the 

noise structure of the spectra measured with the device under development. For this reason, it is 

mandatory to separate the useful spectroscopic information, that will be present also in the signals 

of the new instrumental device, from the noise contribution of the specific instrument used to record 

each literature spectrum. This goal has been achieved by using Wavelet Transform (WT) -based 

signal processing techniques, thanks to the ability of WT to map the analysed signal both in the 

original and in the relevant frequency domains at the same time. Furthermore, the use of various 

wavelets to decompose the signal into the WT domain allows a wide number of representations 

among which to choose the most effective one. 

An ad-hoc developed Fast Wavelet Transform (FWT [21,23])-based algorithm operates on an 

individual signal by convolving it with two filters (called the High-pass and Low-pass 

decomposition wavelet filters, i.e., Hi_D and Low_D, respectively), and splitting it into two 

orthogonal subspaces: the vector of approximations, retaining only the low frequency content of the 

signal, and the vector of details, which collects the high frequency content, respectively. Being the 

two wavelet filters orthogonal to each other, the frequencies retained by Lo_D are not brought by 

Hi_D, and vice versa: they are fully complementary to each other, since the original signal can be 

perfectly reconstructed from the approximations and details vectors, by applying the proper couple 

of wavelet reconstruction filters. The decomposition procedure can be repeated to further 

decomposition levels, applying the same two filters to the approximations vector. In this way, sharp 

and coarse properties of the signal are disjointed and stored into different sub spaces (approximation 
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and detail vectors, at different levels of decomposition). In the present application, the 

reconstruction into the original domain employed the approximations vector at a user-defined level 

of decomposition, suitable to effectively remove the noise: in this way, the pure absorbance 

component of the spectra was obtained, i.e., the spectra cleaned from the instrumental noise. To this 

aim, a proper function was written that, through an interactive interface, allowed us to easily find 

the optimal values of the calculation parameters, i.e., wavelet type and decomposition level, thanks 

to the direct visualization of the resulting signals, i.e., the original spectrum, the low-frequency 

contribution, and the high-frequency contribution.  

Different wavelet filters were considered, namely wavelet functions belonging to the Daubechies, 

symlets and coiflets families. The most part of the spectra were denoised using a Daubechies 

wavelet function (db3) at the 3
rd

 level of decomposition. As an example, in Figure 2 a portion of the 

spectrum of benzene is reported, showing the original spectrum together with the denoised one 

(upper plot), and their difference (lower plot). The irregular shape of the signal reported in the lower 

plot of Figure 2 clearly confirms that the high frequency content extracted by FWT actually 

corresponds to a random noise affecting the spectrum, not bearing any useful information. 

3.1.3. Standardising spectra 

The next step consisted in the transformation of the denoised signals in order to obtain uniform 

datasets of standardized spectra at constant concentration (1 ppb), within the 1000-2500 cm
-1

 

spectral range. To this aim, the smoothed spectra are elaborated by a Matlab function that resamples 

the spectra at the desired resolution, into a spectral window defined by the user. First, in order to 

obtain an output signal resembling the hypothetical spectrum resulting from the instrument, the 

original spectrum is convolved with a Gaussian function with mean value of 1 and standard 

deviation derived from the Full Width at Half Maximum (FWHM) of the EC-QCLPAS laser line, 

according to the equation: 
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)2ln(22

FWHM
  (1) 

In this case FWHM was set to 0.1 cm
-1

. 

After convolution, the resulting signal is resampled at the desired wavenumber values by shifting a 

second order polynomial interpolating three subsequent points at a time. 

3.2. Extraction of the Noise Structure of EC-QCL-PAS spectra 

As already mentioned, the final version of the instrument is not available yet; however, extraction 

of the specific noise from a signal measured with an available prototype was possible. In order not 

to arbitrarily assume an homoscedastic nature of the noise, the dependence upon signal intensity 

was also computed. In this way, a proper noise contribution can be added to the preprocessed 

spectra of the mixtures. 

The spectrum of CH3OH at 90 ppm concentration was exploited to this aim, and analyzed using the 

same FWT-based procedure that was previously used to denoise the literature spectra.  

The noise structure was defined by the following procedure: 

1. identification of the optimal conditions, in terms of type of wavelet and decomposition 

level, to separate the informative signal (I) from the corresponding noise (N). In particular, 

I corresponds to the reconstructed approximation vector, while N can be obtained by 

subtracting I from the original spectrum; 

2. sorting of I in ascending order (I’), and of the noise signal N accordingly (N’); 

3. subdivision of I’ and N’ in n intervals; 

4. calculation of the mean of the intensity signal, I’m, and of the standard deviation of N’, N’s, 

for each interval; 
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5. estimate of robust linear regression models of N’s as a function of I’m , both with and 

without inclusion of the intercept b0; 

6. repetition of points 3 to 5, changing the number of intervals n (from 10 to 200, step by 10, 

for 20 iterations overall); 

The plots of the robust regression models have been included as Supplementary Material, together 

with the results of the noise extraction from the spectrum of CH3OH. 

Considering the values of the regression coefficients, b0 and b1, of the relevant error estimates [s(b0) 

and s(b1)], and of coefficients significance [p(b0) and p(b1)] as a function of the different number of 

intervals (Figure 3), it is possible to observe that the intercept values are often not significant, and 

that the slope values of the models calculated by including the intercept are very similar to those 

calculated by setting b0 to 0. Moreover, it can be also noticed that the b1 values do not vary 

significantly at varying the number of intervals, n. 

This led us to use the following equation to estimate the noise as a function of the signal intensity: 

 I(i)b(i)N 1s ˆ  (2) 

where, for each point i of the signal, the estimate of the standard deviation of noise (i)N s
ˆ  is 

obtained by multiplying the corresponding intensity of the denoised signal I(i) by 1b , i.e. the mean 

value of the b1 coefficients of the regression models obtained for each number of intervals, n. 

Then, the noise structure can be applied to a simulated spectrum P to give the corresponding final 

spectrum S, using the following equation: 

 r(i)(i)NP(i)P(i)S(i) s  ˆ  (3) 

where, for each point i of the signal, (i)N s
ˆ  is the noise estimated, by equation 2, from the intensity 

of the pure spectrum P(i), and r(i) is a randomly generated number drawn from the standard normal 
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distribution. As an example, the result of the application of this noise structure to the smoothed 

spectra of the target molecules (1 ppm concentration) is reported in Figure 4. 

3.3. Gas mixtures concentration 

3.3.1. Definition of the concentration domains 

In order to simulate a spectral dataset suitable to take into account the complex variability of the 

composition of gaseous mixtures in real environments, Experimental Design techniques, along with 

an adequate randomization strategy, have been exploited. In this work more than 30 different gases 

have been considered, including i) target compounds, ii) interfering species (pollutants) and iii) 

typical air components. This required us to create a concentration matrix accounting for the 

composition of the mixtures, going through the separate elaboration of 3 different concentration 

matrixes, viz. one for each class of components, that were subsequently merged. In details, variable 

amounts of 4 target molecules and of 20 interfering species were considered to be possibly present, 

in addition to the 9 gases typically found in the atmosphere that are detectable by MIR 

spectroscopy. 

As for the target molecules, in order to simulate an homogeneous set of possible gas mixtures, an 

approximately balanced number of mixtures containing 1, 2, 3 or 4 target gases has been 

formulated. To address this issue, all the possible combinations, i.e., one single species, all the 

possible couples of 2 targets, all the possible terns of 3 targets, and the 4 targets altogether, were 

considered. For each combination a full Factorial Design (FD) was adopted to simulate a set of 

possible concentration values. The number of concentration levels of each FD was purposely 

managed, as reported in Table 3, leading to 499 mixtures of target species on the whole. 

In view of the high number of considered pollutants, however taking into account that the 

simultaneous presence of a high number of them is unrealistic, only mixtures containing from 1 to 3 

interfering species were considered. In order to realize a balanced design, 3 FDs have been 
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developed, considering 13, 4 and 3 concentration levels for each combination of 1, 2 and 3 

interfering species, respectively, which leads to the number of mixtures reported in Table 4. The 

whole number of mixtures of pollutants results equal to 34080. The consideration of all these 

mixtures is actually impractical, so that a subsampling procedure, which will be described in the 

following section, was adopted.  

In order to properly define experimental domains for both targets and pollutants, it was important to 

cover quite wide concentration ranges, but at the same time it was also appropriate to consider a 

relatively high number of mixtures containing low concentrations, since low values are most likely 

to be found in real scenarios. To this aim, the experimental designs with the lower number of 

concentration levels (from 1 to 5) were built using a non-uniform spacing criterion for the 

concentrations, by defining a dyadic sequence such that, for example, for a 5 level FD in the range 

from 0 to 1, the non-uniform spacing leads to the following levels: 0, 1/8, 1/4, 1/2, 1. 

For the air components a different planning scheme has been adopted, since in this case all the 9 

components must be always included. Therefore, considering that the relevant concentrations 

follow lognormal distributions, their values were randomly generated from similar distributions, 

defined for each single species. To this aim, starting from the maximum (MAXLIT) and the typical 

(TYPLIT) environmental concentration values, as inferred from literature [28] (Table 2), a function 

was written to generate the corresponding lognormal frequency distribution function. Such a 

procedure was followed to obtain 1000 concentration values for each air component. Moreover, in 

order to avoid the risk to obtain unrealistic results, the random generation of the concentration 

values was repeated until the final dataset satisfied the following constrains:  

 in order to guarantee that the most part of the range between TYPLIT and MAXLIT is covered, 

the highest concentration value falling within this range is forced to result ≥ 0.9 × MAXLIT; 

 concentration values higher than 10 × MAXLIT are discarded; 
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 in order to simulate anomalous though realistic situations, such as very high CO2 

concentrations that could be found, for instance, within a sealed shipping container, 2 to 5 

concentration values > MAXLIT, and one value > 5 × MAXLIT have been considered; 

 unrealistic H2O concentration values (> 10
8
 ppb) are not considered. 

3.3.2. Final mixture concentration matrix 

The final mixture concentration matrix was generated according to the following scheme (Figure 5): 

1. 501 rows of zeros were added at the end of the matrix relative to the 499 target mixtures, to 

give a target concentration matrix of size {1000 × 4}, composed by 1000 mixtures of the 4 

target molecules; 

2. 250 mixtures with one pollutant, 250 mixtures with 2 pollutants, and 250 mixtures with 3 

pollutants were randomly selected from the whole set of 34080 pollutant mixtures, and the 

resulting matrix was added with 250 rows of zeros; the 1000 rows were finally shuffled 

randomly, to give a pollutants concentration matrix of size {1000 × 20}, composed by 1000 

mixtures of the 20 pollutants; 

3. in order to guarantee that all the 20 pollutants are sufficiently represented, step 2 was repeated 

until each pollutant is present in 65 mixtures at least; 

4. the 1000 air concentration values for each air component were merged, to give an air 

components concentration matrix of size {1000 × 9}, consisting of 1000 mixtures of the 9 air 

components; 

5. the 3 matrices were merged, to give the final mixture concentration matrix of size {1000 × 

33}, bearing the concentration values of each single component (33 columns) for a set of 

1000 gas mixtures (rows). 

This procedure was iterated 5 times, in order to build a final data matrix with 5000 different 

mixtures, which is supposed to give efficiently account for a real scenario.  
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3.4. Spectra multiplication 

3.4.1. Sigmoidal Weighting Function 

Once the matrices of the denoised literature spectra and of the concentrations of the mixtures are 

ready, they can be used to build up the matrix of the spectra profiles for the gas mixtures. Under the 

quite reasonable assumption of a linear relationship between the concentration of a given pure 

chemical species and the intensity of the relevant spectral bands, the simple multiplication of each 

unit concentration spectrum by the relevant concentration level within each gas mixture, gives 

unrealistic results. By such a procedure, in fact, the background of the unit concentration spectrum 

is forced to change accordingly to the corresponding concentration value, and the correct signal 

shape is therefore not preserved. For this reason, an algorithm based on a Sigmoidal Weighting 

Function (SWF) was developed to multiply correctly the spectra ascribed to the actual sample under 

exam by the corresponding concentrations, preserving the background intensity and shape, hence 

only operating on the true absorption bands. 

In detail, given a literature spectrum, S, consisting of 1 ≤ i ≤ p data points, the corresponding 

spectrum R, resulting from multiplication by a concentration value c ≥ 1 ppb, and weighted by the 

SWF, is obtained for each point i by the equation: 

 S(i)c
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











)1(

1

1
1  (4) 

where SMIN and SMAX are the minimum and maximum intensity values of signal S, respectively, and 

a and m are two adjustable parameters used to define the shape of the SWF. Using this function, the 

lowest intensity values of the signal S are multiplied by 1, while the highest values are linearly 

multiplied by the proper concentration value, c. Intermediate intensity values are multiplied by a 

factor ranging from 1 to c, which depends on the values of the parameters a and m. In particular, m 
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corresponds to the percentile of the signal intensities at which the multiplication factor is equal to 

(c+1)/2, while a defines the slope of the sigmoidal function. SWF, whose effects are shown in 

Figure 6 for the high (Figure 6.a) and low (Figure 6.b) intensity values, needs being suitably tuned 

by properly setting the values of m and a. In particular, in Figure 6.b the difference between the 

adoption of a linear multiplication of the whole spectrum by a constant concentration factor (dotted 

lines) and the use of the appropriate SWF (solid lines) is well evident. 

3.4.2. Simulated spectral data matrix 

Each mixture spectrum of the simulated spectral data matrix is obtained by: 

 using equation (4) to multiply each unit concentration spectrum by the corresponding value in 

the concentration mixture matrix; 

 summing up all these spectra, based on the additive property of absorbance; 

 adding the noise estimated by equation (3). 

The 5000 mixture spectra of the final dataset include air, pollutants, and targets, at the chosen 

concentration levels, in the proper mixing proportions. 

 

4. TEST OF THE PROPOSED APPROACH 

A preliminary experimental test was performed in order to verify the validity of the proposed 

procedure to simulate the spectra expected from the instrument going to be realized. The signals 

recorded with the EC-QCL-PAS prototype instruments on a binary mixture composed by CH3OH 

and NH3, and on a quaternary mixture composed by H2O, CO2, CH3OH and safrole, were used to 

this purpose. The two different mixtures were tested with two different laser setups, as it was 

described in Section 2.2. Moreover, for each laser source a spectrum collected with the same EC-

QCL-PAS prototype instrument on 90 ppm CH3OH was compared with the corresponding 
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simulated spectrum, in order to estimate the value of the constant multiplication factor necessary to 

convert the photoacoustic intensities into the corresponding absorbances. This constant 

multiplication factor was calculated as the ratio between the average of the absorbance values of the 

CH3OH simulated spectrum in the 1050-1060 cm
-1

 range and the average of the EC-QCL-PAS 

intensity values in the same spectral range. This choice was justified by the highest intensity values 

of the CH3OH spectrum in this range. The constant multiplication factor was then used to convert 

the EC-QCLPAS mixture spectrum to an absorbance plot that, in turn, was compared to the 

corresponding simulated spectrum. 

Figure 7 reports the comparison of the EC-QCL-PAS spectra (in black) with the corresponding 

simulated spectra (in gray), both for the binary NH3 + CH3OH gas mixture (Figure 7.a) and for the 

quaternary H2O + CO2 + CH3OH + safrole gas mixture (Figure 7.b). Both the simulated spectra 

show a satisfactory agreement with the experimentally measured ones, with respect to both the 

signal intensity and shape. In particular, the simulated spectrum of the binary mixture (Figure 7.a, 

spectral resolution 0.1 cm
-1

) is almost coincident with the corresponding EC-QCL-PAS spectrum, 

except for some very limited discrepancies in the intensity and position of the peaks with highest 

intensity (at about 1084.5, 1065.6 and 1046.4 cm
-1

) due to NH3. While the differences in the 

intensity values can be ascribed to the accuracy of the actual gas concentration and to the uneven 

distribution of the laser power curve, the slight shifts in the wavenumbers (max 0.2 cm
-1

) are likely 

due to the repeatability of the positioning of the laser source, which might cause some random 

changes in the absolute accuracy of the wavenumber values. A lower, though well acceptable 

performance was obtained for the simulation of the quaternary mixture (Figure 7.b, spectral 

resolution 0.5 cm
-1

). In this case, although the overall shape of the signal is quite well modeled, 

higher discrepancies are observed, especially in the range between 1060 and 1038 cm
-1

. While the 

absorbance values of the simulated and of the measured spectra are very close to each other, 

differences can be observed in terms of spectral resolution. This is likely due to the fact that the 
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laser used for the measurement of this gas mixture operated in pulsed mode, which typically 

broadens the linewidth of the laser itself. While the resolution used both for the acquisition of the 

experimental data and for the simulation of the spectra was equal to 0.5 cm
-1

, the linewidth of the 

pulsed laser source is below 1 cm
-1

: convolution of the laser linewidth with the actual spectrum 

occurs, which results in broadening of some sharp spectral features. 

However, in general, also in view of the fact that the final instrumentation will employ a continuous 

wave laser source, the comparison between the simulated spectra and the corresponding EC-QCL-

PAS experimental data confirms the validity of the proposed approach. This indicates that the 

dataset of 5000 simulated gas mixtures spectra constitutes a valuable tool to address properly the 

realisation of the final instrumentation. 

 

5. CONCLUSIONS 

In this work we faced the issue to build up a spectral database, specific of a given MIR instrument, 

relative to mixtures of a high number of gases. The starting point consisted of literature spectra of 

single species, taken from different databases, which had to be properly processed in order to 

possess equal features in terms of abscissa scale and range, resolution, etc. Once the noise, 

differently affecting the single imported spectra, has been separated from the informative trace, the 

specific noise of the instrument to which the mixtures database is devoted has been added, and the 

reliable concentrations of the different components was accounted for by a suitable concentration 

matrix. A series of complex spectra of the possible mixtures of the different considered species was 

thus built, to constitute the database sought. 

It should be emphasized that, despite the specificity of the case dealt with in the present article, the 

algorithms developed for the various stages of the procedure are of general validity and can be very 

simply adapted to a variety of different experimental situations. 
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Based on this first stage, the optimal choice of the spectral points will be identified, in order to 

achieve most efficient extraction of the information sought. Even better results will be gained by 

designing a learning procedure that allows the system to acquire new informative spectra and 

possibly discard less informative ones, depending on the progressive knowledge of the 

characteristics of the instrument with respect to noise, possible drift, etc., as well as of the specific 

environment in which it operates. The flexibility of the developed software allows one to address it 

easily even to quite different situations. 
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CAPTIONS TO TABLES AND FIGURES 

Table 1 List of pollutants (interfering species) together with the relevant upper concentration 

limits. 

Table 2 Air components, with corresponding typical and maximum concentration values. 

Table 3 Definition of the number of mixtures of target molecules. 

Table 4 Definition of the number of mixtures of pollutants. 

 

Figure 1 Scheme of the EC-QCL-PAS instrument: 1) Laser power meter; 2) Photoacustic cell; 3) 

Cantilever; 4) Balance cell; 5) Tubes for gas outlet and valves; 6) Tubes for gas inlet and 

valves; 7) Window; 8) Laser; 9) CMOS detector; 10) Rotating chopper wheel; 11) 

Chopper frequency read-out; 12) Rotating plane; 13) Grating; 14) Quantum Cascade 

Laser; 15) External Cavity –lenses; 16) QCL beam. 

Figure 2 Denoising literature spectra: the upper plot reports a sample portion of benzene spectrum 

(black) together with the denoised signal (wavelet approximations, red), while the lower 

plot reports the extracted noise (wavelet details). 

Figure 3 Regression coefficients b0 and b1, relevant errors s(b0) and s(b1) and significance values 

p(b0) and p(b1), as a function of the different number of intervals, n. For b1, s(b1) and 

p(b1), the blue circles are referred to the values obtained including the intercept, while the 

red circles are referred to the values obtained setting b0 = 0. 

Figure 4 Spectra of the four target molecules at 1 ppm concentration, added with the experimental 

noise. 

Figure 5 Mixture merging scheme 

Figure 6 Effect of SWF on the multiplication of a 1 ppm spectrum of acetonitrile by 3 different 

concentration levels (1, 5, and 10): a) whole spectra; b) zoom on the Y axis. The dotted 

lines represent the results of the simple multiplication by a constant value (const), while 

the solid lines represent the spectra obtained using the SWF. 

Figure 7 Comparison between simulated spectra (gray) and EC-QCL-PAS spectra (black) relative 

to: a) binary mixture of NH3 (1 ppm) and CH3OH (1.6 ppm); b) quaternary mixture of 

H2O (380 ppm), CO2 (10000 ppm), CH3OH (11 ppm) and safrole (11 ppm).  
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Table 1 

 

Molecule 
Upper limit 

[ppm] 
 Molecule 

Upper limit 

[ppm] 

Toluene 2.382  Propylene 0.01 

Formaldehyde 0.4  Acetic acid 0.092 

Ammonia 0.022  Ethylene glycol 0.491 

Acrylonitrile 0.011  Naphthalene 0.071 

Benzene 0.034  m-xylene 0.649 

Ethanol 0.146  p-xylene 0.649 

Methanol 0.016  o-xylene 0.016 

Chloroform 0.038  Styrene 0.014 

Ethylene 0.01  1,3-butadiene 0.005 

Butane 0.033  Acrolein 0.011 
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Table 2  

 

Molecule 
Typical concentration, 

TYPLIT [ppm] 

Maximum concentration, 

MAXLIT [ppm] 

CH4 1.745 10 

CO2 379 1000 

CO 0.2 9 

H2O 10000 60000 

N2O 0.314 1 

NO2 0.06 0.1 

NO 0.02 0.1 

SO2 0.005 0.03 

O3 0.004 0.1 
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Table 3 

 

N° of target 

molecules per 

mixture (T) 

Concentration 

levels (L) 

N° of 

combinations 

of T targets (C) 

Number of 

mixtures 

(N=C×L
T
) 

1 40 4 160 

2 5 6 150 

3 3 4 108 

4 3 1 81 
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Table 4 

N° of Pollutants 

per mixture (P) 

Concentration 

Levels (L) 

N° of 

combinations of 

P pollutants (C) 

Number of 

mixtures 

(N=C×L
P
) 

1 13 20 260 

2 4 190 3040 

3 3 1140 30780 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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SUPPLEMENTARY MATERIAL 

 

Figure A1 Noise extraction from the spectrum of CH3OH experimentally measured with the 

continuous wave laser: a) original EC-QCL-PAS spectrum (black dotted line) and 

denoised spectrum (gray solid line); b) EC-QCL-PAS experimental noise. The best 

separation between instrumental noise and informative spectrum was gained using a 

sym2 wavelet at the first level of decomposition. The irregular shape of the signal 

reported in the lower plot clearly confirms that the high frequency content extracted 

by FWT actually corresponds to the noise component of the analyzed spectrum. 
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Figure A2 Estimation of the experimental LPAS noise: plots of the mean values of the intensity 

signal (I’m) as a function of the corresponding standard deviation values of the noise 

signal (N’s) calculated for the different number of intervals subdivisions, n (specified 

within each plot). The red lines correspond to the robust regression models calculated 

including the intercept, while the green lines are referred to the models with b0 = 0. 

 

 

 


