481 research outputs found

    ‘Vorgänger Darwins’ or ‘ Nachfolger Goethes

    Full text link

    Spectral methods for the wave equation in second-order form

    Get PDF
    Current spectral simulations of Einstein's equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudo-spectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on the boundaries. Using energy methods, we prove semi-discrete stability of the new method for the scalar wave equation in flat space and show how it can be applied to the scalar wave on a curved background. Numerical results demonstrating stability and convergence for multi-domain second-order scalar wave evolutions are also presented. This work provides a foundation for treating Einstein's equations directly in second-order form by spectral methods.Comment: 16 pages, 5 figure

    Clonal expansion within pneumococcal serotype 6C after use of seven-valent vaccine

    Get PDF
    Streptococcus pneumoniae causes invasive infections, primarily at the extremes of life. A seven-valent conjugate vaccine (PCV7) is used to protect against invasive pneumococcal disease in children. Within three years of PCV7 introduction, we observed a fourfold increase in serotype 6C carriage, predominantly due to a single clone. We determined the whole-genome sequences of nineteen S. pneumoniae serotype 6C isolates, from both carriage (n = 15) and disease (n = 4) states, to investigate the emergence of serotype 6C in our population, focusing on a single multi-locus sequence type (MLST) clonal complex 395 (CC395). A phylogenetic network was constructed to identify different lineages, followed by analysis of variability in gene sets and sequences. Serotype 6C isolates from this single geographical site fell into four broad phylogenetically distinct lineages. Variation was seen in the 6C capsular locus and in sequences of genes encoding surface proteins. The largest clonal complex was characterised by the presence of lantibiotic synthesis locus. In our population, the 6C capsular locus has been introduced into multiple lineages by independent capsular switching events. However, rapid clonal expansion has occurred within a single MLST clonal complex. Worryingly, plasticity exists within current and potential vaccine-associated loci, a consideration for future vaccine use, target selection and design

    Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    Get PDF
    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these "degeneracies" of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.Comment: 12 pages, 3 figures, updated to match the published MNRAS versio

    Periastron Advance in Spinning Black Hole Binaries: Gravitational Self-Force from Numerical Relativity

    Get PDF
    We study the general relativistic periastron advance in spinning black hole binaries on quasi-circular orbits, with spins aligned or anti-aligned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies' labels, we devise an improved version of the perturbative result, and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a non-spinning particle orbiting a Kerr black hole of mass M and spin S = -0.5 M^2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.Comment: 18 pages, 12 figures; matches version to appear in Phys. Rev.
    corecore