33 research outputs found

    The Role of MR Enterography in Assessing Crohn’s Disease Activity and Treatment Response

    Get PDF
    MR enterography (MRE) has become the primary imaging modality in the assessment of Crohn’s disease (CD) in both children and adults at many institutions in the United States and worldwide, primarily due to its noninvasiveness, superior soft tissue contrast, and lack of ionizing radiation. MRE technique includes distention of the small bowel with oral contrast media with the acquisition of T2-weighted, balanced steady-state free precession, and multiphase T1-weighted fat suppressed gadolinium contrast-enhanced sequences. With the introduction of molecule-targeted biologic agents into the clinical setting for CD and their potential to reverse the inflammatory process, MRE is increasingly utilized to evaluate disease activity and response to therapy as an imaging complement to clinical indices or optical endoscopy. New and emerging MRE techniques, such as diffusion-weighted imaging (DWI), magnetization transfer, ultrasmall superparamagnetic iron oxide- (USPIO-) enhanced MRI, and PET-MR, offer the potential for an expanded role of MRI in detecting occult disease activity, evaluating early treatment response/resistance, and differentiating inflammatory from fibrotic strictures. Familiarity with MR enterography is essential for radiologists and gastroenterologists as the technique evolves and is further incorporated into the clinical management of CD

    Avoidant Restrictive Food Intake Disorder Prevalent Among Patients With Inflammatory Bowel Disease

    Get PDF
    Background & Aims Inflammatory bowel disease (IBD) patients alter their dietary behaviors to reduce disease-related symptoms, avoid feared food triggers, and control inflammation. This study aimed to estimate the prevalence of avoidant/restrictive food intake disorder (ARFID), evaluate risk factors, and examine the association with risk of malnutrition in patients with IBD. Methods This cross-sectional study recruited adult patients with IBD from an ambulatory clinic. ARFID risk was measured using the Nine-Item ARFID Screen. Nutritional risk was measured with the Patient Generated-Subjective Global Assessment. Logistic regression models were used to evaluate the association between clinical characteristics and a positive ARFID risk screen. Patient demographics, disease characteristics, and medical history were abstracted from medical records. Results Of the 161 participants (Crohn’s disease, 45.3%; ulcerative colitis, 51.6%; IBD-unclassified, 3.1%), 28 (17%) had a positive ARFID risk score (≥24). Most participants (92%) reported avoiding 1 or more foods while having active symptoms, and 74% continued to avoid 1 or more foods even in the absence of symptoms. Active symptoms (odds ratio, 5.35; 95% confidence interval, 1.91–15.01) and inflammation (odds ratio, 3.31; 95% confidence interval, 1.06–10.29) were significantly associated with positive ARFID risk. Patients with a positive ARFID risk screen were significantly more likely to be at risk for malnutrition (60.7% vs 15.8%; P \u3c .01). Conclusions Avoidant eating behaviors are common in IBD patients, even when in clinical remission. Patients who exhibit active symptoms and/or inflammation should be screened for ARFID risk, with referrals to registered dietitians to help monitor and address disordered eating behaviors and malnutrition risk

    Complex host genetics influence the microbiome in inflammatory bowel disease

    Get PDF
    Background: Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. One of the strongest associations in each case is inflammatory bowel disease (IBD), but disease risk cannot be explained fully by either factor individually. Recent findings point to interactions between host genetics and microbial exposures as important contributors to disease risk in IBD. These include evidence of the partial heritability of the gut microbiota and the conferral of gut mucosal inflammation by microbiome transplant even when the dysbiosis was initially genetically derived. Although there have been several tests for association of individual genetic loci with bacterial taxa, there has been no direct comparison of complex genome-microbiome associations in large cohorts of patients with an immunity-related disease. Methods: We obtained 16S ribosomal RNA (rRNA) gene sequences from intestinal biopsies as well as host genotype via Immunochip in three independent cohorts totaling 474 individuals. We tested for correlation between relative abundance of bacterial taxa and number of minor alleles at known IBD risk loci, including fine mapping of multiple risk alleles in the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene exon. We identified host polymorphisms whose associations with bacterial taxa were conserved across two or more cohorts, and we tested related genes for enrichment of host functional pathways. Results: We identified and confirmed in two cohorts a significant association between NOD2 risk allele count and increased relative abundance of Enterobacteriaceae, with directionality of the effect conserved in the third cohort. Forty-eight additional IBD-related SNPs have directionality of their associations with bacterial taxa significantly conserved across two or three cohorts, implicating genes enriched for regulation of innate immune response, the JAK-STAT cascade, and other immunity-related pathways. Conclusions: These results suggest complex interactions between genetically altered host functional pathways and the structure of the microbiome. Our findings demonstrate the ability to uncover novel associations from paired genome-microbiome data, and they suggest a complex link between host genetics and microbial dysbiosis in subjects with IBD across independent cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0107-1) contains supplementary material, which is available to authorized users

    A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients

    Get PDF
    Background: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that is associated with changes in the gut microbiome. Here, we sought to identify strain-specific functional correlates with IBD outcomes. Methods: We performed metagenomic sequencing of monthly stool samples from 20 IBD patients and 12 controls (266 total samples). These were taxonomically profiled with MetaPhlAn2 and functionally profiled using HUMAnN2. Differentially abundant species were identified using MaAsLin and strain-specific pangenome haplotypes were analyzed using PanPhlAn. Results: We found a significantly higher abundance in patients of facultative anaerobes that can tolerate the increased oxidative stress of the IBD gut. We also detected dramatic, yet transient, blooms of Ruminococcus gnavus in IBD patients, often co-occurring with increased disease activity. We identified two distinct clades of R. gnavus strains, one of which is enriched in IBD patients. To study functional differences between these two clades, we augmented the R. gnavus pangenome by sequencing nine isolates from IBD patients. We identified 199 IBD-specific, strain-specific genes involved in oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, potentially conferring an adaptive advantage for this R. gnavus clade in the IBD gut. Conclusions: This study adds further evidence to the hypothesis that increased oxidative stress may be a major factor shaping the dysbiosis of the microbiome observed in IBD and suggests that R. gnavus may be an important member of the altered gut community in IBD. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0490-5) contains supplementary material, which is available to authorized users

    Functional brain rewiring and altered cortical stability in ulcerative colitis.

    No full text
    Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC), N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. None of the observed brain changes were correlated with disease duration. Together, these findings are consistent with compromised functioning of networks involved in executive function and sensory integration in UC
    corecore