13 research outputs found

    A metric for predicting binaural speech intelligibility in stationary noise and competing speech maskers

    Get PDF
    One criterion in the design of binaural sound scenes in audio production is the extent to which the intended speech message is correctly understood. Object-based audio broadcasting systems have permitted sound editors to gain more access to the metadata (e.g., intensity and location) of each sound source, providing better control over speech intelligibility. The current study describes and evaluates a binaural distortion-weighted glimpse proportion metric -- BiDWGP -- which is motivated by better-ear glimpsing and binaural masking level differences. BiDWGP predicts intelligibility from two alternative input forms: either binaural recordings or monophonic recordings from each sound source along with their locations. Two listening experiments were performed with stationary noise and competing speech, one in the presence of a single masker, the other with multiple maskers, for a variety of spatial configurations. Overall, BiDWGP with both input forms predicts listener keyword scores with correlations of 0.95 and 0.91 for single- and multi-masker conditions, respectively. When considering masker type separately, correlations rise to 0.95 and above for both types of maskers. Predictions using the two input forms are very similar, suggesting that BiDWGP can be applied to the design of sound scenes where only individual sound sources and their locations are available

    Investiční životní pojištění versus otevřené podílové fondy

    Get PDF
    The aim of the thesis is to compare investment life insurance and collective investment funds according to given criteria and to establish which is more prosperous to a client. The literary survey focuses on research papers a professional studies of the issue. The practical thesis devotes to particular products and their comparision using model clients' examples

    Optimizing speech intelligibility in a noisy environment: A unified view

    No full text
    Modern communication technology facilitates communication from anywhere to anywhere. As a result, low speech intelligibility has become a common problem, which is exacerbated by the lack of feedback to the talker about the rendering environment. In recent years, a range of algorithms has been developed to enhance the intelligibility of speech rendered in a noisy environment. We describe methods for intelligibility enhancement from a unified vantage point. Before one defines a measure of intelligibility, the level of abstraction of the representation must be selected. For example, intelligibility can be measured on the message, the sequence of words spoken, the sequence of sounds, or a sequence of states of the auditory system. Natural measures of intelligibility defined at the message level are mutual information and the hit-or-miss criterion. The direct evaluation of high-level measures requires quantitative knowledge of human cognitive processing. Lower-level measures can be derived from higher-level measures by making restrictive assumptions. We discuss the implementation and performance of some specific enhancement systems in detail, including speech intelligibility index (SII)-based systems and systems aimed at enhancing the sound-field where it is perceived by the listener. We conclude with a discussion of the current state of the field and open problems. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Programming mRNA decay to modulate synthetic circuit resource allocation

    No full text
    Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstrates that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design
    corecore