14,240 research outputs found

    Model atmospheres for type Ia supernovae: Basic steps towards realistic synthetic spectra

    Get PDF
    Type Ia supernovae are an important tool for studying the expansion history of the universe. Advancing our yet incomplete understanding of the explosion scenario requires detailed and realistic numerical models in order to interpret and analyze the growing amount of observational data. Here we present first results of our new NLTE model calculations for the expanding atmospheres of type Ia supernovae that employ a detailed and consistent treatment of all important NLTE effects as well as line blocking and blanketing. The comparison of the synthetic spectra resulting from these models with observed data shows that the employed methods represent an important step towards a more realistic description of the atmospheres of supernovae Ia.Comment: 4 pages, 1 figure, to appear in: Proceedings of the 11th Workshop on Nuclear Astrophysics, Ringberg Castle, Germany, 200

    A monolithic fluid-structure interaction formulation for solid and liquid membranes including free-surface contact

    Full text link
    A unified fluid-structure interaction (FSI) formulation is presented for solid, liquid and mixed membranes. Nonlinear finite elements (FE) and the generalized-alpha scheme are used for the spatial and temporal discretization. The membrane discretization is based on curvilinear surface elements that can describe large deformations and rotations, and also provide a straightforward description for contact. The fluid is described by the incompressible Navier-Stokes equations, and its discretization is based on stabilized Petrov-Galerkin FE. The coupling between fluid and structure uses a conforming sharp interface discretization, and the resulting non-linear FE equations are solved monolithically within the Newton-Raphson scheme. An arbitrary Lagrangian-Eulerian formulation is used for the fluid in order to account for the mesh motion around the structure. The formulation is very general and admits diverse applications that include contact at free surfaces. This is demonstrated by two analytical and three numerical examples exhibiting strong coupling between fluid and structure. The examples include balloon inflation, droplet rolling and flapping flags. They span a Reynolds-number range from 0.001 to 2000. One of the examples considers the extension to rotation-free shells using isogeometric FE.Comment: 38 pages, 17 figure

    A finite membrane element formulation for surfactants

    Full text link
    Surfactants play an important role in various physiological and biomechanical applications. An example is the respiratory system, where pulmonary surfactants facilitate the breathing and reduce the possibility of airway blocking by lowering the surface tension when the lung volume decreases during exhalation. This function is due to the dynamic surface tension of pulmonary surfactants, which depends on the concentration of surfactants spread on the liquid layer lining the interior surface of the airways and alveoli. Here, a finite membrane element formulation for liquids is introduced that allows for the dynamics of concentration-dependent surface tension, as is the particular case for pulmonary surfactants. A straightforward approach is suggested to model the contact line between liquid drops/menisci and planar solid substrates, which allows the presented framework to be easily used for drop shape analysis. It is further shown how line tension can be taken into account. Following an isogeometric approach, NURBS-based finite elements are used for the discretization of the membrane surface. The capabilities of the presented computational model is demonstrated by different numerical examples - such as the simulation of liquid films, constrained and unconstrained sessile drops, pendant drops and liquid bridges - and the results are compared with experimental data.Comment: Some typos are removed. Eqs. 13 and 105 are modified. Eqs. 64 and 73 are added; thus, the rest of equations is renumbered. All the numerical experiments are repeated. The example of Sec. 6.3 is slightly modifie

    A new efficient hyperelastic finite element model for graphene and its application to carbon nanotubes and nanocones

    Full text link
    A new hyperelastic material model is proposed for graphene-based structures, such as graphene, carbon nanotubes (CNTs) and carbon nanocones (CNC). The proposed model is based on a set of invariants obtained from the right surface Cauchy-Green strain tensor and a structural tensor. The model is fully nonlinear and can simulate buckling and postbuckling behavior. It is calibrated from existing quantum data. It is implemented within a rotation-free isogeometric shell formulation. The speedup of the model is 1.5 relative to the finite element model of Ghaffari et al. [1], which is based on the logarithmic strain formulation of Kumar and Parks [2]. The material behavior is verified by testing uniaxial tension and pure shear. The performance of the material model is illustrated by several numerical examples. The examples include bending, twisting, and wall contact of CNTs and CNCs. The wall contact is modeled with a coarse grained contact model based on the Lennard-Jones potential. The buckling and post-buckling behavior is captured in the examples. The results are compared with reference results from the literature and there is good agreement

    Efficient isogeometric thin shell formulations for soft biological materials

    Full text link
    This paper presents three different constitutive approaches to model thin rotation-free shells based on the Kirchhoff-Love hypothesis. One approach is based on numerical integration through the shell thickness while the other two approaches do not need any numerical integration and so they are computationally more efficient. The formulation is designed for large deformations and allows for geometrical and material nonlinearities, which makes it very suitable for the modeling of soft tissues. Furthermore, six different isotropic and anisotropic material models, which are commonly used to model soft biological materials, are examined for the three proposed constitutive approaches. Following an isogeometric approach, NURBS-based finite elements are used for the discretization of the shell surface. Several numerical examples are investigated to demonstrate the capabilities of the formulation. Those include the contact simulation during balloon angioplasty.Comment: Typos are removed. Remark 3.4 is added. Eq. (18) in the previous version is removed. Thus, the equations get renumbered. Example 5.5 is updated. Minor typos in Eqs. (17), (80), (145) and (146), are corrected. They do not affect the result

    Relativistic corrections of one-nucleon current in low-energy three-nucleon photonuclear reactions

    Full text link
    Proton-deuteron radiative capture and two- and three-body photodisintegration of 3He at low energy are described using realistic hadronic dynamics and including the Coulomb force. The sensitivity of the observables to the relativistic corrections of one-nucleon electromagnetic current operator is studied. Significant effects of the relativistic spin-orbit charge are found for the vector analyzing powers in the proton-deuteron radiative capture and for the beam-target parallel-antiparallel spin asymmetry in the three-body photodisintegration of 3He.Comment: 7 figures, accepted for publication in Phys. Rev.
    • …
    corecore