Surfactants play an important role in various physiological and biomechanical
applications. An example is the respiratory system, where pulmonary surfactants
facilitate the breathing and reduce the possibility of airway blocking by
lowering the surface tension when the lung volume decreases during exhalation.
This function is due to the dynamic surface tension of pulmonary surfactants,
which depends on the concentration of surfactants spread on the liquid layer
lining the interior surface of the airways and alveoli. Here, a finite membrane
element formulation for liquids is introduced that allows for the dynamics of
concentration-dependent surface tension, as is the particular case for
pulmonary surfactants. A straightforward approach is suggested to model the
contact line between liquid drops/menisci and planar solid substrates, which
allows the presented framework to be easily used for drop shape analysis. It is
further shown how line tension can be taken into account. Following an
isogeometric approach, NURBS-based finite elements are used for the
discretization of the membrane surface. The capabilities of the presented
computational model is demonstrated by different numerical examples - such as
the simulation of liquid films, constrained and unconstrained sessile drops,
pendant drops and liquid bridges - and the results are compared with
experimental data.Comment: Some typos are removed. Eqs. 13 and 105 are modified. Eqs. 64 and 73
are added; thus, the rest of equations is renumbered. All the numerical
experiments are repeated. The example of Sec. 6.3 is slightly modifie