7 research outputs found

    Sensitivity of double resonance alignment magnetometers

    Get PDF
    We present an experimental study of the intrinsic magnetometric sensitivity of an optical/rf-frequency double resonance magnetometer in which linearly polarized laser light is used in the optical pumping and detection processes. We show that a semi-empirical model of the magnetometer can be used to describe the magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals from the magnetometer are considered and compared

    Experimental study of laser detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical/radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali vapors.Comment: 8 pages, 9 figures. Submitted to Phys. Rev. A. Related to physics/060523

    A new optical magnetometer for MCG measurements in a low-cost shielding room

    Get PDF
    In the past years we were able to show that room temperature optical magnetometers based on magnetic resonance in atomic vapors can be used to measure magnetocardiographic (MCG) signals of healthy adults. The objective of our ongoing work is to demonstrate that multichannel arrangements of affordable and maintenance-free optical magnetometers can be operated in clinical settings. On the way to that goal we studied a new optical magnetometry scheme using linearly polarized light. We also investigated the possibility to operate such magnetometers in inexpensive magnetic shielding rooms based on aluminum

    Innovative concept of compliant mechanisms made by additive manufacturing

    No full text
    The complete redesign for Additive Manufacturing of compliant mechanism structures enables CSEM to develop innovative concepts to drastically reduce the need of machining and assembly after additive manufacturing. Support structures under flexure blades are thus minimised and the overall process becomes more streamlined. Moreover, this concept allows us to easily design and produce monolithic cross flexure pivots with interlocked flexible blades. Based on this concept, CSEM is now developing new architectures of Compliant Mechanisms based on Additive Manufacturing (COMAM) for the European Space Agency (ESA) in the frame of a GSTP research project. The past and current work of design, 3D printing and testing on several compliant mechanisms are presented. These demonstrators will be used as use-case for future high-precision and harsh environment applications such as cryogenic and space

    Experimental study of laser-detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical–radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group [Weis, Bison, and Pazgalev, Phys. Rev. A 74, 033401 (2006)] and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali-metal vapors
    corecore