425 research outputs found
Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus)
Exposure of olfactory epithelium to environmentally relevant concentrations of copper disrupts olfaction in fish. To examine
the dynamics of recovery at both functional and morphological levels after acute copper exposure, unilateral exposure of goldfish olfactory epithelia to 100 μM CuSO4 (10 min) was followed by electro-olfactogram (EOG) recording and scanning electron microscopy. Sensitivity to amino acids (L-arginine
and L-serine), generally considered food-related odorants, recovered most rapidly (three days), followed by that to
catecholamines(3-O-methoxytyramine),bileacids(taurolithocholic acid) and the steroid pheromone, 17,20 -dihydroxy-4-pregnen-
3-one 20-sulfate, which took 28 days to reach full recovery. Sensitivity to the postovulatory pheromone prostaglandin F2R had
not fully recovered even at 28 days. These changes in sensitivity were correlated with changes in the recovery of ciliated and microvillous receptor cell types. Microvillous cells appeared largely unaffected by CuSO4 treatment. Cilia in
ciliated receptor neurones, however, appeared damaged one day post-treatment and were virtually absent after three days but
had begun to recover after 14 days. Together, these results support the hypothesis that microvillous receptor neurones detect amino acids whereas ciliated receptor neurones were not functional and are responsible for detection of social stimuli (bile acidsandpheromones).Furthermore, differences in sensitivity to copper may be due to different transduction pathways in
the different cell types
Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis
Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease
Taxonomy and structure of the Romanian personality lexicon
We identified 1746 personality-relevant trait-adjectives in a Romanian dictionary, of which 412 were classified as descriptors of dispositions by 10 judges. Self-ratings were collected from 515 participants on those 412 adjectives, and the ratings were factored using principal components analysis. Solutions with different numbers of factors were analysed. The two- and three-factor solutions, respectively, confirmed the Big Two and Big Three of personality traits. A five-factor solution reflected the Big Five model with a fifth factor emphasising Rebelliousness versus Conventionality. The five-factor solution was related to the International Personality Item Pool-Big Five scales, and the highest correlations were indeed between the corresponding factors and scales. A six-factor solution was indicative of the six-factor model as expressed in the HEXACO model, yet with a weak Honesty-Humility factor. Additional analysis with self-ratings from 218 participants on marker-scales for the six-factor solution and on the six scales of the HEXACO did not produce a clear one-to-one correspondence between the two sets of scales, confirming indeed that the six-factor model was only partially found
Behind the confession: Relating false confession, interrogative compliance, personality traits, and psychopathy
The present study further supports the established notion that personality traits contribute to the phenomenon of false confessions and compliance in an interrogative setting. Furthermore, the study provides an investigation into the more recent interest in the potential effect of psychopathic traits in this context. A sample of university students (N = 607) completed questionnaires measuring psychopathic traits, interrogative compliance, and the big five personality factors. Of these, only 4.9% (n=30) claimed to have falsely confessed to an academic or criminal offense, with no participant taking the blame for both types of offense. Across measures the big five personality traits were the strongest predictors of compliance. The five personality traits accounted for 17.9 % of the total variance in compliance, with neuroticism being the strongest predictor, followed by openness and agreeableness. Psychopathy accounted for 3.3% of variance, with the lifestyle facet being the only significant predictor. After controlling for the big five personality factors, psychopathy only accounted for a small percentage of interrogative compliance, indicating that interrogators should take into account a person’s personality traits during the interrogation.N/
Human PLCG2 Haploinsufficiency Results in a Novel Natural Killer Cell Immunodeficiency
Background: Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in NK cells, lymphocytes which recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK cell and B cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. Objective: We aimed to identify the genetic cause of NK cell immunodeficiency in two families, and herein describe the functional consequences of two novel loss-of-function variants in PLCG2. Methods: We employed whole exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate two families with NK cell immunodeficiency. Results: We identified novel heterozygous variants in PLCG2 in two families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss-of-function due to haploinsufficiency with impaired NK calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B cell function remained intact. Plcg2+/− mice also displayed impaired NK cell function with preserved B cell function, phenocopying human disease. Conclusions: PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK cell immunodeficiency with herpes virus susceptibility, expanding the spectrum of PLCG2-related disease. Clinical Implication: We identified PLCG2 heterozygous variants in 2 families with severe and/or recurrent herpesvirus infections. This report demonstrates the impact of PLCG2 haploinsufficiency
Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents
Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint
Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length
Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones.
Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (β) and rate of change (κ).
A strong linear relationship was found between the constants β and κ for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice.
The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter
Students’ Ontological Security and Agency in Science Education—An Example from Reasoning about the Use of Gene Technology
Visuospatial Integration: Paleoanthropological and Archaeological Perspectives
The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors
Cognitive and Tactile Factors Affecting Human Haptic Performance in Later Life
Background: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. Methodology/Principal Findings: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects ’ tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects ’ haptic performance. Conclusions: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration o
- …
