56 research outputs found

    Scaling dependence on time and distance in nonlinear fractional diffusion equations and possible applications to the water transport in soils

    Full text link
    Recently, fractional derivatives have been employed to analyze various systems in engineering, physics, finance and hidrology. For instance, they have been used to investigate anomalous diffusion processes which are present in different physical systems like: amorphous semicondutors, polymers, composite heterogeneous films and porous media. They have also been used to calculate the heat load intensity change in blast furnace walls, to solve problems of control theory \ and dynamic problems of linear and nonlinear hereditary mechanics of solids. In this work, we investigate the scaling properties related to the nonlinear fractional diffusion equations and indicate the possibilities to the applications of these equations to simulate the water transport in unsaturated soils. Usually, the water transport in soils with anomalous diffusion, the dependence of concentration on time and distance may be expressed in term of a single variable given by λq=x/tq.\lambda _{q}=x/t^{q}. In particular, for q=1/2q=1/2 the systems obey Fick's law and Richards' equation for water transport. We show that a generalization of Richards' equation via fractional approach can incorporate the above property.Comment: 9 page

    Integro-differential diffusion equation for continuous time random walk

    Full text link
    In this paper we present an integro-differential diffusion equation for continuous time random walk that is valid for a generic waiting time probability density function. Using this equation we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential, and a combination of power law and generalized Mittag-Leffler function. We show that for the case of the exponential waiting time probability density function a normal diffusion is generated and the probability density function is Gaussian distribution. In the case of the combination of a power-law and generalized Mittag-Leffler waiting probability density function we obtain the subdiffusive behavior for all the time regions from small to large times, and probability density function is non-Gaussian distribution.Comment: 12 page

    Tsallis distribution and luminescence decays

    Full text link
    Usually, the Kohlrausch (stretched exponential) function is employed to fit the luminescence decays. In this work we propose to use the Tsallis distribution as an alternative to describe them. We show that the curves of the luminescence decay obtained from the Tsallis distribution are close to those ones obtained from the stretched exponential. Further, we show that our result can fit well the data of porous silicon at low temperature and simulation result of the trapping controlled luminescence model.Comment: 8 pages and 4 figure

    Note on BEC in Nonextensive Statistical Mechanics

    Full text link

    Fokker-Planck equation with variable diffusion coefficient in the Stratonovich approach

    Full text link
    We consider the Langevin equation with multiplicative noise term which depends on time and space. The corresponding Fokker-Planck equation in Stratonovich approach is investigated. Its formal solution is obtained for an arbitrary multiplicative noise term given by g(x,t)=D(x)T(t)g(x,t)=D(x)T(t), and the behaviors of probability distributions, for some specific functions of D(x)D(x)% , are analyzed. In particular, for D(x)∼∣x∣−θ/2D(x)\sim | x| ^{-\theta /2}, the physical solutions for the probability distribution in the Ito, Stratonovich and postpoint discretization approaches can be obtained and analyzed.Comment: 6 pages in LATEX cod

    Entropic Upper Bound on Gravitational Binding Energy

    Get PDF
    We prove that the gravitational binding energy {\Omega} of a self gravitating system described by a mass density distribution {\rho}(x) admits an upper bound B[{\rho}(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density {\rho}. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[{\rho}(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on the one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand

    Stretched-Gaussian asymptotics of the truncated L\'evy flights for the diffusion in nonhomogeneous media

    Full text link
    The L\'evy, jumping process, defined in terms of the jumping size distribution and the waiting time distribution, is considered. The jumping rate depends on the process value. The fractional diffusion equation, which contains the variable diffusion coefficient, is solved in the diffusion limit. That solution resolves itself to the stretched Gaussian when the order parameter μ→2\mu\to2. The truncation of the L\'evy flights, in the exponential and power-law form, is introduced and the corresponding random walk process is simulated by the Monte Carlo method. The stretched Gaussian tails are found in both cases. The time which is needed to reach the limiting distribution strongly depends on the jumping rate parameter. When the cutoff function falls slowly, the tail of the distribution appears to be algebraic.Comment: 19 pages, 5 figure
    • …
    corecore