67 research outputs found

    Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae)

    Get PDF
    Box jellyfish respond to visual stimuli by changing the dynamics and frequency of bell contractions. In this study, we determined how the contrast and the dimming time of a simple visual stimulus affected bell contraction dynamics in the box jellyfish Tripedalia cystophora. Animals were tethered in an experimental chamber where the vertical walls formed the light stimuli. Two neighbouring walls were darkened and the contraction of the bell was monitored by high-speed video. We found that (1) bell contraction frequency increased with increasing contrast and decreasing dimming time. Furthermore, (2) when increasing the contrast and decreasing the dimming time pulses with an off-centred opening had a better defined direction and (3) the number of centred pulses decreased. Only weak effects were found on the relative diameter of the contracted bell and no correlation was found for the duration of bell contraction. Our observations show that visual stimuli modulate swim speed in T. cystophora by changing the swim pulse frequency. Furthermore, the direction of swimming is better defined when the animal perceives a high-contrast, or fast dimming, stimulus

    Velarium control and visual steering in box jellyfish

    Get PDF
    Directional swimming in the box jellyfish Tripedalia cystophora (cubozoa, cnidaria) is controlled by the shape of the velarium, which is a thin muscular sheet that forms the opening of the bell. It was unclear how different patterns of visual stimulation control directional swimming and that is the focus of this study. Jellyfish were tethered inside a small experimental tank, where the four vertical walls formed light panels. All four panels were lit at the start of an experiment. The shape of the opening in the velarium was recorded in response to switching off different combinations of panels. We found that under the experimental conditions the opening in the velarium assumed three distinct shapes during a swim contraction. The opening was (1) centred or it was off-centred and pocketed out either towards (2) a rhopalium or (3) a pedalium. The shape of the opening in the velarium followed the direction of the stimulus as long as the stimulus contained directional information. When the stimulus contained no directional information, the percentage of centred pulses increased and the shape of the off-centred pulses had a random orientation. Removing one rhopalium did not change the directional response of the animals, however, the number of centred pulses increased. When three rhopalia were removed, the percentage of centred pulses increased even further and the animals lost their ability to respond to directional information

    Propulsion in cubomedusae : mechanisms and utility

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56393, doi:10.1371/journal.pone.0056393.Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.This work was supported by an ONR MURI award (N000140810654) and National Science Foundation grant OCE 0623508 to JHC, SPC, JOD. And the work was supported by the Roger Williams University Foundation to Promote Scholarship

    Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa)

    Get PDF
    We examined the development of the nervous system in the rhopalium, a medusa-specific sensory structure, in Aurelia sp.1 (Cnidaria, Scyphozoa) using confocal microscopy. The rhopalial nervous system appears primarily ectodermal and contains neurons immunoreactive to antibodies against tyrosinated tubulin, taurine, GLWamide, and FMRFamide. The rhopalial nervous system develops in an ordered manner: the presumptive gravity-sensing organ, consisting of the lithocyst and the touch plate, differentiates first; the “marginal center,” which controls swimming activity, second; and finally, the ocelli, the presumptive photoreceptors. At least seven bilaterally arranged neuronal clusters consisting of sensory and ganglion cells and their neuronal processes became evident in the rhopalium during metamorphosis to the medusa stage. Our analysis provides an anatomical framework for future gene expression and experimental studies of development and functions of scyphozoan rhopalia

    Diversity, Phylogeny and Expression Patterns of Pou and Six Homeodomain Transcription Factors in Hydrozoan Jellyfish Craspedacusta sowerbyi

    Get PDF
    Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions
    corecore