288 research outputs found

    Cloud Based Security

    Get PDF
    As we all know that internet is progressing in the terms of social networking website and the site which highly interact with the user also the use spent more time on this kind of website. Also user share their personal information, some important data, photos among various people that may belong their group or community so the security for all this things is mandatory but most of the time the site doesnt give proper attention toward this security requirement by which the user information may leak by unauthorized person. so in this paper we are trying to secure the informa tion of users using different compression and encryption algorithm and the address of information from users. This data is stored at various places on internet which is scattered on worldwide . So when any authorized person is trying to access his data that person only get all the information about his data but still he will never know the location of that data. The system we developed in thi s paper allows the user to upload all his data in any format including the security feature like compression and encry ption. This all uploaded data and information can be access from anywhere in the world. So finally we can say that we developed the very secure system to store the important info rmation on website in a very effective & secured manner

    Development and Validation of Analytical Method for Simultaneous Estimation of Formoterol Fumarate Dihydrate and Fluticasone Propionate from Bulk and Dry Powder Inhaler Formulation

    Get PDF
    A method was developed and validated for analysis of Formoterol Fumarate and Fluticasone Propionate in dry powder inhaler formulations. Separation was achieved on a HiQ Sil C18HS, 250×4.6 mm, 5 µm column using a mobile phase consisting of Acetonitrile: 0.01 M Ammonium Dihydrogen Phosphate solution (80:20 %v/v) at a flow rate of 1ml/min PDA detection at 215.0 nm. This method is validated according to ICH guidelines, which include linearity, precision, accuracy, specificity, robustness. The result obtained were within the acceptance criteria as per ICH guidelines. Keywords: formoterol fumarate dihydrate, fluticasone propionate, buffer, HPLC

    Biosurfactants’ multifarious functional potential for sustainable agricultural practices

    Get PDF
    Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices

    Molecular Diversity Assessment in Selected Accessions of White Seeded Sesame (Sesamum indicum L.) using SSR Markers

    Get PDF
    315-321Fifty sesame accessions with 10 simple sequence repeat (SSR) markers were used for their molecular characterization and assessment of genetic diversity. It was observed through this study that the accessions have enough genetic variability at molecular levels. Thirty five alleles with mean polymorphism information content of 0.42 resulted from the molecular studies very explicitly indicate the superiority of SSR primers in assessment of genetic diversity. These primer bands size varied from 200 to 400 bp. The number of alleles per locus in selected accessions varied from 3 to 6 and heterozygosity per primer ranged from 0.00 to 0.40. The pair wise genetic similarity varied from 0.44 to 0.86. A closure view of dendrogram identified two major clusters, indicating high genetic resemblance among sesame accessions. Hence, under the study here, diversity assessment through SSR markers was proved to be stronger tools for discriminating Sesamum indicum accessions

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Variety AHB 1269Fe (MH 2185)

    Get PDF
    Pearl millet Varietal Identification Committee in its annual meet on 22nd-24th March, 2018, during the 53rd Annual Pearl Millet Workshop at ARS, Jodhpur, identified MH 2185 as “biofortified pearl millet hybrid AHB 1269Fe” for its high grain Fe combined with high grain and stover yield. MH 2185 is a cross between male-sterile line ICMA1 98222 (female parent) and restorer AUBI 1105 (male parent). The line ICMA1 98222 is based on A1 source of cytoplasmic malesterility developed at ICRISAT, Patancheru. Hybrid MH 2185 was tested in the All India Coordinated Pearl Millet Improvement Project (AICRP-PM) trials during 2015-2017 seasons at 36 locations (12 locations each in 2015, 13 locations in 2016 and 11 locations in 2017) together with 6 controls, 86M86, 86M01, MPMH 17, HHB-67 Improved, Pratap, and Dhanashakti. While the first five controls are commercially released highyielding hybrid cultivars, Dhanashakti is an improved version of open pollinated variety (OPV) ICTP8203 with high grain Fe (71 ppm). AHB 1269Fe hybrid was jointly developed and sponsored to AICRP-PM for evaluation by National Agriculture Research Project Aurangabad, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani and International Crops Research Institute for Semi-Aric Tropics (ICRISAT), Patancheru, India

    Synergistic Activity of Rhamnolipid Biosurfactant and Nanoparticles Synthesized Using Fungal Origin Chitosan Against Phytopathogens

    Get PDF
    Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 μg/ml) was observed than that of FCH and FCHNPs (>1,024 μg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 μg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 μg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61–90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future
    corecore