14 research outputs found

    Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Get PDF
    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field

    A highly efficient synthesis of imidazo-fused polyheterocycles via Groebke–Blackburn–Bienaymè reaction catalyzed by LaCl3·7H2O

    No full text
    A highly efficient and mild protocol for the synthesis of imidazo-fused polyheterocycles via Groebke–Blackburn–Bienaymè reaction under the influence of catalytic amount of lanthanum chloride heptahydrate has been described. A wide range of nitrogen-enriched polyheterocycles are synthesized with high yields under neat conditions

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial

    No full text
    Background: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. Methods: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2–65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin–piperaquine or dihydroartemisinin–piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate–mefloquine or dihydroartemisinin–piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether–lumefantrine or artemether–lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. Findings: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin–piperaquine (183 [17%]), dihydroartemisinin–piperaquine plus mefloquine (269 [25%]), artesunate–mefloquine (73 [7%]), artemether–lumefantrine (289 [26%]), or artemether–lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin–piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin–piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p Interpretation: Dihydroartemisinin–piperaquine plus mefloquine and artemether–lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance.</br
    corecore