15 research outputs found

    A Model for the 3He(\vec d, p)4He Reaction at Intermediate Energies

    Get PDF
    Polarization correlation coefficients have been measured atRIKEN for the \vec 3He(\vec d,p)4He reaction at intermediate energies. We propose a model for the (\vec d, p) reaction mechanism using the pd elastic scattering amplitude which is rigorously determined by a Faddeev calculation and using modern NN forces. Our theoretical predictions for deuteron polarization observables A_y, A_{yy}, A_{xx} and A_{xz} at E_d=140, 200 and 270 MeV agree qualitatively in shape with the experimental data for the reaction 3He(\vec d,p)4He.Comment: 6 pages, 11 figures, 1 table, reference: http://www.phys.ntu.edu.tw/english/fb16/contribution/topic4/Uesaka_Tomohiro1. ps in Contribution for the XVIth IUPAP International Conference on Few-Body Problems in Physics, (Taipei, Taiwan 6-11, March 2000

    Role of platelet-derived growth factor receptor-α and -β in pulmonary fibrosis in mice

    Get PDF
    Platelet-derived growth factor (PDGF) has been implicated in the pathogenesis of pulmonary fibrosis. Nintedanib, a multi-kinase inhibitor that targets several tyrosine kinases, including PDGF receptor (PDGFR), was recently approved as an anti-fibrotic agent to reduce the deterioration of FVC in patients with idiopathic pulmonary fibrosis (IPF). However, the effects of PDGFR-α or -β on pulmonary fibrosis remain unclear. In an attempt to clarify their effects, we herein used blocking antibodies specific for PDGFR-α (APA5) and -β (APB5) in a bleomycin (BLM)-induced pulmonary fibrosis mouse model. The effects of these treatments on the growth of lung fibroblasts were examined using the 3H-thymidine incorporation assay in vitro. The anti-fibrotic effects of these antibodies were investigated with the Ashcroft score and collagen content of lungs treated with BLM. Their effects on inflammatory cells in the lungs were also analyzed using bronchoalveolar lavage fluid. We investigated damage to epithelial cells and the proliferation of fibroblasts in the lungs. APA5 and APB5 inhibited the phosphorylation of PDGFR-α and -β as well as the proliferation of lung fibroblasts induced by PDGF-AA and BB. The administration of APB5, but not APA5 effectively inhibited BLM-induced pulmonary fibrosis in mice. Apoptosis and the proliferation of epithelial cells and fibroblasts were significantly decreased by the treatment with APB5, but not by APA5. The late treatment with APB5 also ameliorated fibrosis in lungs treated with BLM. These results suggest that PDGFR-α and -β exert different effects on BLM-induced pulmonary fibrosis in mice. A specific approach using the blocking antibody for PDGFR-β may be useful for the treatment of pulmonary fibrosis

    Collagen adhesion gene is associated with blood stream infections caused by methicillin-resistant Staphylococcus aureus

    Get PDF
    Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) causes hospital- and community-acquired infections. It is not clear whether genetic characteristics of the bacteria contribute to disease pathogenesis in MRSA infection. We hypothesized that whole genome analysis of MRSA strains could reveal the key gene loci and/or the gene mutations that affect clinical manifestations of MRSA infection. Methods: Whole genome sequences (WGS) of MRSA of 154 strains were analyzed with respect to clinical manifestations and data. Further, we evaluated the association between clinical manifestations in MRSA infection and genomic information. Results: WGS revealed gene mutations that correlated with clinical manifestations of MRSA infection. Moreover, 12 mutations were selected as important mutations by Random Forest analysis. Cluster analysis revealed strains associated with a high frequency of bloodstream infection (BSI). Twenty seven out of 34 strains in this cluster caused BSI. These strains were all positive for collagen adhesion gene (cna) and have mutations in the locus, those were selected by Random Forest analysis. Univariate and multivariate analysis revealed that these gene mutations were the predictor for the incidence of BSI. Interestingly, mutant CNA protein showed lower attachment ability to collagen, suggesting that the mutant protein might contribute to the dissemination of bacteria. Conclusions: These findings suggest that the bacterial genotype affects the clinical characteristics of MRSA infection. (c) 2019 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases

    A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis

    No full text
    Molecular chaperones play crucial roles in various aspects of the biogenesis and maintenance of proteins in the cell. The heat shock protein 70 (HSP70) chaperone system, in which HSP70 proteins act as chaperones, is one of the major molecular chaperone systems conserved among a variety of organisms. To shed light on the evolutionary history of the constituents of the chordate HSP70 chaperone system and to identify all of the components of the HSP70 chaperone system in ascidians, we carried out a comprehensive survey for HSP70s and their cochaperones in the genome of Ciona intestinalis. We characterized all members of the Ciona HSP70 superfamily, J-proteins, BAG family, and some other types of cochaperones. The Ciona genome contains 8 members of the HSP70 superfamily, all of which have human and protostome counterparts. Members of the STCH subfamily of the HSP70 family and members of the HSPA14 subfamily of the HSP110 family are conserved between humans and protostomes but were not found in Ciona. The Ciona genome encodes 36 J-proteins, 32 of which belong to groups conserved in humans and protostomes. Three proteins seem to be unique to Ciona. J-proteins of the RBJ group are conserved between humans and Ciona but were not found in protostomes, whereas J-proteins of the DNAJC14, ZCSL3, FLJ13236, and C21orf55 groups are conserved between humans and protostomes but were not found in Ciona. J-proteins of the sacsin group seem to be specific to vertebrates. There is also a J-like protein without a conserved HPD tripeptide motif in the Ciona genome. The Ciona genome encodes 3 types of BAG family proteins, all of which have human and protostome counterparts (BAG1, BAG3, and BAT3). BAG2 group is conserved between humans and protostomes but was not found in Ciona, and BAG4 and BAG5 groups seem to be specific to vertebrates. Members for SIL1, UBQLN, UBADC1, TIMM44, GRPEL, and Magmas groups, which are conserved between humans and protostomes, were also found in Ciona. No Ciona member was retrieved for HSPBP1 group, which is conserved between humans and protostomes. For several groups of the HSP70 superfamily, J-proteins, and other types of cochaperones, multiple members in humans are represented by a single counterpart in Ciona. These results show that genes of the HSP70 chaperone system can be distinguished into groups that are shared by vertebrates, Ciona, and protostomes, ones shared by vertebrates and protostomes, ones shared by vertebrates and Ciona, and ones specific to vertebrates, Ciona, or protostomes. These results also demonstrate that the components of the HSP70 chaperone system in Ciona are similar to but simpler than those in humans and suggest that changes of the genome in the lineage leading to humans after the separation from that leading to Ciona increased the number and diversity of members of the HSP70 chaperone system. Changes of the genome in the lineage leading to Ciona also seem to have made the HSP70 chaperone system in this species slightly simpler than that in the common ancestor of humans and Ciona

    Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress

    No full text
    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28°C (10°C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system
    corecore