42 research outputs found

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Analysis of the Loading and Hydroxylation Steps in Lankamycin Biosynthesis in Streptomyces rochei

    No full text
    The biosynthetic gene cluster of lankamycin (LM), a 14-member macrolide antibiotic, is encoded on the 210-kb linear plasmid pSLA2-L in Streptomyces rochei 7434AN4. LM contains a 3-hydroxy-2-butyl group at the C-13 position, which is different from an ethyl group in erythromycin. The following two possibilities could be considered for the origin of this starter moiety of LM biosynthesis: (i) an extra module exists in the biosynthetic gene cluster and loads an additional acetate molecule, or (ii) 3-hydroxy-2-butyrate or its equivalent is loaded and incorporated as a starter. The former possibility was eliminated by the complete sequencing of pSLA2-L, which showed no extra module. On the other hand, the latter was confirmed by incorporation of deuterium in [3-(2)H]dl-isoleucine into the C-14 position of LM. The timing of hydroxylation reactions at the C-15 and C-8 positions of LM was studied by constructing disruptants of two P450 hydroxylase genes, lkmF (orf26) and lkmK (orf37). The lkmF disruptant produced 8-deoxylankamycin, while the lkmK disruptant produced both 15-deoxylankamycin and 8,15-dideoxylankamycin. These results clearly showed that LkmF is a C-8 hydroxylase and LkmK is a C-15 hydroxylase in LM biosynthesis and in addition suggested the order of hydroxylation steps; namely, hydroxylation may occur at first at C-15 by LkmK and then at C-8 by LkmF
    corecore