748 research outputs found

    Phase-shift extraction from twice-normalized light intensity changes recorded with random phase shifts

    Get PDF
    A simple phase-shift extraction algorithm is proposed for interferograms recorded with random phase shifts that vary over at least 2π. The phase-shift-dependent changes in the intensity at two pixels having different phases, selected from one frame, are taken out and normalized. The sum and difference of the two normalized changes are calculated, and both the changes are normalized again along the phase shifts. The normalized sum and difference become the cosine and sine of a term including the random phase shift, respectively. Thereby, the phase shifts are extracted from both twice-normalized intensity changes. An experiment using an interference microscope equipped with a piezoelectric-transducer positioner of an objective lens is conducted to estimate the validity of the algorithm. The algorithm is verified to have satisfactory results when the multiple interferograms used have a sample size of more than 15 frames recorded with random phase shifts

    Deterioration of longitudinal, circumferential, and radial myocardial strains during acute coronary flow reduction: which direction of strain should be analyzed for early detection?

    Full text link
    Longitudinal myocardial strain is considered to deteriorate in the early ischemic stage compared to circumferential and radial strains because the subendocardial inner oblique fibers are generally directed along the longitudinal axis. However, it is unclear whether the decrease in longitudinal strain precedes a decrease in circumferential and radial strains during acute coronary flow reduction. The left anterior descending artery was gradually narrowed in 13 open-chest dogs. Whole-wall and subendocardial longitudinal, circumferential, and radial strains were analyzed at baseline and during flow reduction. Peak systolic and end-systolic strains, the postsystolic strain index (PSI), and the early systolic strain index (ESI) were measured in the risk area; the decreasing rate in each parameter and the diagnostic accuracy to detect flow reduction were evaluated. Absolute values of peak systolic and end-systolic strains gradually decreased with flow reduction. The decreasing rate and diagnostic accuracy of longitudinal systolic strain were not significantly different from those in other strains, although the diagnostic accuracy of radial systolic strain tended to be lower. PSI and ESI gradually increased with flow reduction. In these parameters, a lower diagnostic accuracy with respect to radial strain was not demonstrated. During acute coronary flow reduction, the decrease in longitudinal systolic strain did not precede that in circumferential systolic strain; however, the decrease in radial systolic strain may be smaller than that of other systolic strains. In contrast, there appeared to be no differences in the PSI and ESI values among the three strains.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/S10554-020-01888-

    Critical behaviour in gravitational collapse of radiation fluid --- A renormalization group (linear perturbation) analysis ---

    Get PDF
    A scenario is presented, based on renormalization group (linear perturbation) ideas, which can explain the self-similarity and scaling observed in a numerical study of gravitational collapse of radiation fluid. In particular, it is shown that the critical exponent β\beta and the largest Lyapunov exponent Reκ{\rm Re\, } \kappa of the perturbation is related by β=(Reκ)1\beta= ({\rm Re\, } \kappa) ^{-1}. We find the relevant perturbation mode numerically, and obtain a fairly accurate value of the critical exponent β0.3558019\beta \simeq 0.3558019, also in agreement with that obtained in numerical simulation.Comment: 4 pages in ReVTeX, 2 uuencoded eps figures, uses BoxedEPSF.te

    Domain-Agnostic Batch Bayesian Optimization with Diverse Constraints via Bayesian Quadrature

    Full text link
    Real-world optimisation problems often feature complex combinations of (1) diverse constraints, (2) discrete and mixed spaces, and are (3) highly parallelisable. (4) There are also cases where the objective function cannot be queried if unknown constraints are not satisfied, e.g. in drug discovery, safety on animal experiments (unknown constraints) must be established before human clinical trials (querying objective function) may proceed. However, most existing works target each of the above three problems in isolation and do not consider (4) unknown constraints with query rejection. For problems with diverse constraints and/or unconventional input spaces, it is difficult to apply these techniques as they are often mutually incompatible. We propose cSOBER, a domain-agnostic prudent parallel active sampler for Bayesian optimisation, based on SOBER of Adachi et al. (2023). We consider infeasibility under unknown constraints as a type of integration error that we can estimate. We propose a theoretically-driven approach that propagates such error as a tolerance in the quadrature precision that automatically balances exploitation and exploration with the expected rejection rate. Moreover, our method flexibly accommodates diverse constraints and/or discrete and mixed spaces via adaptive tolerance, including conventional zero-risk cases. We show that cSOBER outperforms competitive baselines on diverse real-world blackbox-constrained problems, including safety-constrained drug discovery, and human-relationship-aware team optimisation over graph-structured space.Comment: 24 pages, 5 figure

    SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces

    Full text link
    Batch Bayesian optimisation and Bayesian quadrature have been shown to be sample-efficient methods of performing optimisation and quadrature where expensive-to-evaluate objective functions can be queried in parallel. However, current methods do not scale to large batch sizes -- a frequent desideratum in practice (e.g. drug discovery or simulation-based inference). We present a novel algorithm, SOBER, which permits scalable and diversified batch global optimisation and quadrature with arbitrary acquisition functions and kernels over discrete and mixed spaces. The key to our approach is to reformulate batch selection for global optimisation as a quadrature problem, which relaxes acquisition function maximisation (non-convex) to kernel recombination (convex). Bridging global optimisation and quadrature can efficiently solve both tasks by balancing the merits of exploitative Bayesian optimisation and explorative Bayesian quadrature. We show that SOBER outperforms 11 competitive baselines on 12 synthetic and diverse real-world tasks.Comment: 34 pages, 12 figure

    Cord Blood from SGA Preterm Infants Exhibits Increased GLUT4 mRNA Expression

    Get PDF
    [Background] Insulin and insulin-like growth factor (IGF) signaling plays an important role in prenatal and postnatal growth and glucose metabolism. Both small-for-gestational age (SGA) and preterm infants have abnormal growth and glucose metabolism. However, the underlying mechanism remains unknown. Recently, we showed that term SGA infants have abnormal insulin/IGF signaling in cord blood. In this study, we examined whether preterm infants show similar aberrations in cord blood insulin/IGF signaling. [Methods] A total of 41 preterm cord blood samples were collected. Blood glucose, insulin, IGF-1, and C-peptide concentrations were measured, and mRNA expression of IGF1R, INSR, IRS1, IRS2, and SLC2A4 (i.e., GLUT4) was analyzed by quantitative reverse-transcription PCR. [Results] This study included 34 appropriate-for-gestational age (AGA) and 7 SGA preterm neonates. No hyperinsulinemia or any differences in IGF1R or INSR mRNA expression were detected between the two groups. However, GLUT4 mRNA levels were increased in preterm SGA. Moreover, the expression level in hypoglycemic preterm SGA was significantly higher than that in hypoglycemic preterm AGA. IRS2 mRNA expression did not show a statistically significant difference between preterm SGA and AGA neonates. [Conclusion] SGA preterm birth does not induce hyperinsulinemia; however, it modifies insulin/IGF signaling components such as GLUT4 in umbilical cord blood. Our study suggests that prematurity or adaptation to malnutrition alters the insulin/IGF signaling pathway
    corecore