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ABSTRACT
Background Insulin and insulin-like growth factor 
(IGF) signaling plays an important role in prenatal and 
postnatal growth and glucose metabolism. Both small-
for-gestational age (SGA) and preterm infants have 
abnormal growth and glucose metabolism. However, the 
underlying mechanism remains unknown. Recently, we 
showed that term SGA infants have abnormal insulin/
IGF signaling in cord blood. In this study, we examined 
whether preterm infants show similar aberrations in 
cord blood insulin/IGF signaling.
Methods A total of 41 preterm cord blood samples 
were collected. Blood glucose, insulin, IGF-1, and 
C-peptide concentrations were measured, and mRNA 
expression of IGF1R, INSR, IRS1, IRS2, and SLC2A4 
(i.e., GLUT4) was analyzed by quantitative reverse-
transcription PCR.
Results This study included 34 appropriate-for-
gestational age (AGA) and 7 SGA preterm neonates. 
No hyperinsulinemia or any differences in IGF1R or 
INSR mRNA expression were detected between the two 
groups. However, GLUT4 mRNA levels were increased 
in preterm SGA. Moreover, the expression level in 
hypoglycemic preterm SGA was significantly higher 
than that in hypoglycemic preterm AGA. IRS2 mRNA 
expression did not show a statistically significant differ-
ence between preterm SGA and AGA neonates.
Conclusion SGA preterm birth does not induce 
hyperinsulinemia; however, it modifies insulin/IGF 
signaling components such as GLUT4 in umbilical cord 
blood. Our study suggests that prematurity or adapta-
tion to malnutrition alters the insulin/IGF signaling 
pathway.
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Insulin and insulin-like growth factor (IGF) signaling 
play an important role in prenatal and postnatal growth 
and glucose metabolism.1–3 IGF-1 and insulin bind 
to both IGF-1 receptor (IGF-1R) and insulin receptor 
(INSR) to activate their phosphorylation and also 

induce phosphorylation of insulin receptor substrate 
(IRS). Phosphorylated IRS proteins act as docking 
sites for several intracellular proteins and promote 
glucose transporter 4 (GLUT4) translocation from 
vesicles to the cell membrane, which explains the dif-
ference between insulin and IGF-1 actions.1 IRS1 and 
IRS2 are considered critical intracellular proteins for 
insulin/IGF signaling.1–3 Numerous molecular studies 
have revealed that abnormalities in the insulin/IGF 
signaling pathway induce insulin resistance and type 2 
diabetes.4–6 For example, increased release of free fatty 
acids, glycerol, hormones (e.g., leptin, adiponectin, and 
endothelin-1),3, 4, 6, 7 and pro-inflammatory cytokines 
(e.g., tumor necrosis factor α, interleukin-1β, and 
interleukin-6) from adipose tissue in obesity, affects 
IRS kinase and induces abnormal signaling, resulting in 
insulin resistance.8–10 However, there are few reports on 
the insulin/IGF-1 signaling in neonates.

Furthermore, small-for-gestational age (SGA) neo-
nates have abnormal growth and glucose metabolism, 
such as hypoglycemia,11 which is occasionally associ-
ated with hyperinsulinemia, postnatal insulin resis-
tance, and growth failure in adulthood.12–18 In addition, 
preterm infants also have been shown to demonstrate 
abnormal growth and glucose metabolism analogous 
to term SGA infants.19–21 However, the mechanisms 
underlying these effects are still unclear, and the modes 
both “SGA” and “preterm” impact insulin/IGF signal-
ing pathway remain unknown.

Monocytes and erythrocytes are known to 
express insulin and IGF-1 receptors.22 In very early 
studies, insulin/IGF signaling was studied using hu-
man circulating blood cells.23 Accordingly, we have 
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previously studied to evaluate how SGA impact insulin/
IGF signaling pathway, and have shown that term SGA 
infants have abnormal insulin/IGF signaling as higher 
IRS2 mRNA levels were detected in SGA subjects.24 In 
this study, we investigated insulin/IGF signaling in cord 
blood from preterm infants to determine how preterm 
and SGA impact insulin/IGF signaling pathway.

MATERIALS AND METHODS
Subjects and measurement
This study initially included all preterm neonates 
(gestational age < 37 weeks) who were born between 
June 2018 and July 2019 at the Perinatal Medical Center 
of Tottori University Hospital. We performed all the 
procedures after obtaining the consent from the moth-
ers. We then excluded neonates who met the following 
criteria: Apgar score < 5 at 5 min, neonates with con-
genital disorders, malformations, or genetic disorders, 
and those born from mothers having diabetes or with 
gestational diabetes mellitus with any treatment. We 
also obtained information of the mothers and neonates 
from electronic medical records. We then defined SGA 
neonates as those with birth weight and birth length be-
low the 10th percentile of the local sex-specific distribu-
tion for gestational age, and appropriate-for-gestational 
age (AGA) neonates as those with birth weight and/or 
birth length between the 25th and 75th percentile of the 
local sex-specific distribution for gestational age, based 
on the Japanese neonatal anthropometric charts for 
gestational age, sex, and the mother’s history of child-
birth.25 Accordingly, 7 SGA and 34 AGA neonates were 
included; AGA neonates were considered as controls. 
We immediately measured the levels of plasma glucose, 
serum insulin, C-peptide, and IGF-1 using 5-8 mL of 
cord blood collected from the umbilical vein at birth 
as described previously.24 Hypoglycemia was defined 
as plasma glucose levels < 50 mg/dL (< 2.8 mmol/
L). When hypoglycemia was detected, treatment was 
instituted by feeding milk or by intravenous glucose in-
fusion. None of the neonates tested positive for neonatal 
mass screening tests for inborn errors of metabolism. 
This study was approved by the Ethical Review Board, 
Tottori University School of Medicine, Japan (No. 
17A056). This investigation was conducted according to 
the principles mentioned in the Declaration of Helsinki. 
Patients information and identity were kept anonymous 
prior to conducting mRNA analysis.

Quantitative RT-PCR
Quantitative RT-PCR was performed as described 
previously.24 Briefly, cord blood samples were collected 
immediately after birth into PAX gene® Blood RNA 

Tubes (Becton, Dickinson and Company, UK), and total 
RNA from umbilical cord blood was purified using 
the reagents provided in the PAX gene® Blood RNA 
Kit (QIAGEN, Germany) within 5 days, followed by 
reverse transcription. First-strand cDNA synthesis was 
performed as described previously.24 Quantitative real-
time PCR analysis was applied to evaluate expression 
of IGF1R, INSR, IRS1, IRS2, and glucose transporter 4 
(SLC2A4, known as GLUT4) mRNA by using ViiA 7® 
Real-Time PCR System (Thermo Fisher Scientific Inc., 
MA) with Universal Probe Library (Roche Molecular 
Systems, Inc., CA) and TaqMan Gene Expression Assay 
(Thermo Fisher Scientific Inc., MA). In this study, 
SLC2A2 mRNA, one of the targets of our previous 
study, could not be analyzed due to technical issues. The 
mean mRNA level of β-actin from all preterm AGA 
neonates with normoglycemia was used as the control. 
Universal Probe Library® probes #22, #54, #49, #67, 
and #63 were used to detect IGF1R, INSR, IRS1, IRS2, 
SLC2A4, and β-actin expression, respectively. TaqMan 
Gene Expression Assay® (Hs00178563_ml) was used 
for IRS1. We calculated relative mRNA expression lev-
els using the 2−ΔΔCt method. The quality of samples was 
assessed using RNA integrity number (RIN).26 RINs 
were 8 or greater in 30 samples, 7 in 10 samples, and 5 
in 1 sample.

Statistical analysis
Statistical analysis was performed using the statistical 
software ‘EZR’ (Easy R, version 1.40),27 which is based 
on R (version 3.5.2) and R commander (version 2.5-1, R 
Foundation for Statistical Computing, Vienna, Austria). 
Differences between groups (Table 1) were assessed 
using Welch’s tests. The correlations of each item with 
gestational age or birth weight were analyzed using the 
Spearman rank correlation coefficient (Tables 2, 3 and 
Figs. 1, 2). Welch’s tests were used again to examine 
the differences of mRNA expressions between the 
groups (Fig. 3). We also used the Kruskal-Wallis test 
to compare the differences among the combination of 
hypoglycemia/normoglycemia with AGA/SGA. As a 
post-hoc test, Steel-Dwass test were additionally per-
formed to compare for each pair. (Table 4 and Fig. 4). 
The results in Tables 1 and 4 are expressed as median 
and interquartile range, and those in Figs. 3 and 4 are 
expressed as mean ± standard error of the mean. A p-
value < 0.05 was considered to indicate a statistically 
significant difference.

RESULTS
Patients background
There were 87 preterm infants born during the 
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study period. Among them, the parents of 28 did not 
participate in this study. Among the remaining 59 
infants, 9 had insufficient cord blood. We were able to 
collect sufficient cord blood from the other 50 preterm 
neonates, but 9 of them were excluded because of 

congenital anomalies and improper specimen prepara-
tion. Therefore, the analysis was performed on 41 
neonatal cord blood samples.

The clinical characteristics and maternal informa-
tion are shown in Table 1. All p-values express the 

Table 1. Characteristics of preterm neonates

Total 
n = 41

AGA 
n = 34

SGA 
n = 7 P-value

Maternal
 Age (years) 30 (29 to 34) 30.5 (29 to 34) 30 (29.5 to 35) 0.44
 BMI (kg/cm2) 24.2 (22.8 to 25.4) 24.5 (23.0 to 25.4) 24.9 (21.7 to 25.6) 0.61
 Vaginal delivery (n, %) 17 (41) 17 (50) 0 (0) < 0.05
Neonatal

 Male (n, %) 29 (71) 25 (74) 4 (57) 0.4
 Gestational age (weeks) 34 (34 to 36) 34 (34 to 36) 34 (32 to 35) 0.48
 Birth weight (gram) 2,105 (1,699 to 2,331) 2,163 (1,877 to 2,370) 1,551 (1,346 to 1,707) < 0.01
 Birth weight SDS –0.66 (–1.23 to –0.06) –0.48 (–0.69 to 0.01) –1.64 (-2.39 to –1.46) < 0.01
 Birth length (cm) 43.5 (40 to 45.5) 44 (42 to 45.5) 38 (35 to 39.5) < 0.01
 Birth length SDS –0.89 (-1.23 to –0.14) –0.56 (–1.09 to 0.08) –2.54 (-2.99 to –2.41) < 0.01
 Singleton (n, %) 25 (61) 22 (65) 3 (43) 0.4
 Apgar score 1 min 7 (5 to 8) 8 (7 to 8) 4.5 (4 to 6) 0.09
 Apgar score 5 min 9 (8 to 9) 9 (8 to 9) 8.5 (7.5 to 9) 0.65
 Hypoglycemia (n, %) 19 (46) 15 (44) 4 (57) 0.69
 Glucose (mg/dL) 51 (41 to 61) 51 (44.25 to 62.5) 49 (40.5 to 58.5) 0.7
 Insulin (µU/mL) 2.10 (1.28 to 3.80) 2.34 (1.34 to 4.66) 1.2 (0.82 to 1.25) < 0.05
 IGF-1 (ng/mL) 42.7 (25.4 to 56.7) 47.2 (29.85 to 59.25) 27.6 (16 to 34.5) < 0.05
 C-Peptide (ng/mL) 0.7 (0.5 to 0.9) 0.65 (0.5 to 0.98) 0.7 (0.65 to 0.73) 0.94
Values are given as median (interquartile range) unless otherwise noted. Significant differences (P < 0.05) are marked in bold. IGF-1, 
insulin-like growth factor-1.

Table 2. Spearman correlation between gestational age and each mRNA expression

Correlation with IGF1R Correlation with INSR Correlation with IRS1 Correlation with IRS2 Correlation with GLUT4
rs P rs P rs P rs P rs P

AGA 0.16 0.38 0.02 0.93 –0.16 0.38 –0.002 1 –0.13 0.46
SGA –0.4 0.37 –0.09 0.85 –0.84 < 0.05 0.164 0.73 –0.13 0.79
Overall –0.04 0.8 –0.04 0.79 –0.26 0.09 –0.04 0.82 –0.17 0.28
The significant correlations (P < 0.05) are marked in bold.

Table 3. Spearman correlation between birth weight SDS and each mRNA expression

Correlation with IGF1R Correlation with INSR Correlation with IRS1 Correlation with IRS2 Correlation with GLUT4
rs P rs P rs P rs P rs P

–0.20 0.22 –0.15 0.35 0.06 0.73 –0.26 0.10 –0.44 < 0.01
Significant correlations (P < 0.05) are marked in bold.
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difference between AGA and SGA using Welch t-test. 
In total, 41 newborns (29 males and 12 females) were in-
cluded. They were all born with gestational age between 
29 and 36 weeks, and were all classified as having low 
birth weight. Of these, 34 (83%) were AGA neonates, 
and the remaining 7 (17%) were SGA neonates. There 
was no difference in the maternal age and body-mass 
index between the AGA and SGA groups. The median 
gestational age between the AGA and SGA groups was 
not significantly different. As expected, birth weight 
was significantly lower in the SGA group (P < 0.01). 
The median plasma glucose levels between the 2 groups 
were not significantly different (AGA: 51 mg/dL, SGA: 
49 mg/dL: P = 0.7); hypoglycemia occurred in 15 AGA 
neonates (44%) and in 4 SGA neonates (57%), with no 
statistical difference (P = 0.69). Furthermore, the serum 
insulin level was significantly lower (P = 0.02) in the 
SGA compared to the AGA. Serum IGF-1 levels were 

significantly lower (P = 0.04) in the SGA subjects. There 
was no significant difference in the serum C-peptide 
levels between the 2 groups (P = 0.94). Additionally, 
none of the subjects suffered from hyperinsulinemic 
hypoglycemia during the neonatal period.

Correlation between mRNA expression in cord 
blood and gestational age or clinical indicator
Figure 1 shows the correlation between gestational 
age and each biochemical test result. The glucose (A) 
level in AGA was positively correlated with gestational 
age. With regard to mRNA expression (Table 2), IRS1 
mRNA in the SGA showed a negative correlation with 
gestational age. The mRNA expression of other genes 
did not correlate with gestational age.

Fig. 1. Spearman correlation between gestational age and (A) glucose, (B) insulin, or (C) IGF-1. White circles and the dashed line 
denote AGA; black circles and the solid line denote SGA. Significant correlations (P < 0.05) are marked in bold. AGA, appropriate-for-
gestational age; IGF-1, insulin-like growth factor-1; SGA, small-for-gestational age.

Fig. 2. Spearman correlation between birth weight SDS and (A) glucose, (B) insulin, or (C) IGF-1. White circles and the dashed line 
denote AGA; black circles and the solid line denote SGA. Significant correlations (P < 0.05) are marked in bold. AGA, appropriate-for-
gestational age; IGF-1, insulin-like growth factor-1; SGA, small-for-gestational age.
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Correlation between mRNA expression in cord 
blood and birth weight or clinical indicator
Birth weight standard deviation score (SDS) was 
positively correlated with insulin and IGF-1 (rs = 0.55; 
P < 0.01, rs = 0.75; P < 0.01, respectively) (Figs. 2A–C). 
The mRNA expression analysis revealed a negative cor-
relation between birth weight SDS and GLUT4 mRNA 
(rs = –0.44; P < 0.01) (Table 3). IRS2 mRNA was not 
significantly correlated with birth weight SDS.

Comparison of mRNA expression levels in cord 
blood cells between AGA and SGA preterm infants
As shown in Fig. 3, no difference was observed in the 
mRNA expression levels of IGF1R and INSR between 
the SGA and AGA neonates. On the other hand, GLUT4 
mRNA expression, which showed no significant in-
crease in the term study, was significantly increased by 
1.7 times in the SGA preterm neonates compared to that 
in the AGA preterm neonates (P < 0.01). Increased IRS2 
mRNA expression was observed in SGA neonates but 
was not statistically significant (P = 0.20), unlike in the 
term study.

Effects of hypoglycemia on the mRNA expression 
in cord blood
We next utilized the Kruskal-Wallis test to compare 
among the 4 groups: AGA with normoglycemia, AGA 
with hypoglycemia, SGA with normoglycemia, and 
SGA with hypoglycemia, and Steel-Dwass test to 
compare each pair. The characteristics of these groups 
are listed in Table 4, and a comparison of each mRNA 
examined is shown in Fig. 4. P-values in Table 4 ex-
press the difference among the 4 groups. There was no 
increase in insulin level in the hypoglycemic SGA cord 
blood. IGF-1 levels exhibited a significant difference 

among the four groups (P = 0.04) but showed no differ-
ence between each pair in the post-hoc test. The birth 
weight SDS in the SGA with hypoglycemia group was 
lower than that without hypoglycemia, but this differ-
ence was not significant in the Steel-Dwass test (P = 
0.29). However, GLUT4 mRNA (Fig. 4E) levels in the 
SGA neonates with hypoglycemia were significantly 
higher than those of the AGA neonates with hypoglyce-
mia, in the post-hoc test (P = 0.03).

DISCUSSION
In this study, we reported several changes in the insulin/
IGF signaling pathway in cord blood derived from 
preterm infants. Consistent with the results of our previ-
ous study conducted with term infants, preterm SGA 
neonates demonstrated lower serum IGF-1 levels than 
preterm AGA infants. No difference was observed in 
the mRNA expression levels of IRS1, IGF1R, and INSR 
between the AGA and SGA preterm infants. This was 
similar to the observations in term infants.24 In contrast, 
preterm SGA infants showed decreased levels of serum 
insulin and increased levels of SLC2A4 mRNA, which 
was translated to GLUT4 glucose-transporter protein, 
compared to preterm AGA infants, unlike in term 
infants.24 No statistical difference was observed in IRS2 
mRNA expression, which was increased in the full-term 
SGA infants, as observed in a previous study.24 This is 
in contrast with the observations for term infants.24

The present study with preterm neonates demon-
strated lower serum IGF-1 and insulin levels in SGA 
infants than in preterm AGA infants. The term SGA in-
fants also exhibited lower serum IGF-1 levels.24 Similar 
findings are reported in previous studies conducted on 
human infants, rats, and sheep.28–34 It is well known 
that undernutrition induces a decrease in IGF and 

Table 4. Comparison of biomolecules and birth history among the combinations of AGA/SGA and 
normoglycemia/hypoglycemia

AGA SGA
Total Normoglycemia Hypoglycemia Normoglycemia Hypoglycemia P-value

N (n, %) 41 (100) 19 (46) 15 (37) 3 (7) 4 (10)
Gestational age 
(weeks) 34 (34 to 36) 34 (33 to 35) 35 (34 to 36) 34 (34 to 35) 32 (29.8 to 34.5) 0.14

Birth weight SDS –0.66 
(–1.23 to –0.06)

–0.53 
(–1.03 to 0.08)

–0.27 
(–0.81 to –0.07)

–1.38 
(–1.51 to –1.37)

–2.39 
(–2.83 to –2.01) < 0.01

Insulin (µU/mL) 2.10 (1.28 to 3.80) 2.19 (1.31 to 2.79) 2.58 (1.48 to 6.60) 1.27 (1.04 to 1.99) 0.87 (0.56 to 1.04) 0.08
IGF-1 (ng/mL) 42.7 (25.4 to 56.7) 36.3 (22.4 to 58.8) 51.4 (44.7 to 59.6) 25.0 (18.0 to 38.9) 30.1 (21.6 to 33.1) < 0.05
C-peptide (ng/mL) 0.7 (0.5 to 0.9) 0.7 (0.5 to 1.05) 0.6 (0.55 to 0.95) 0.75 (0.73 to 0.78) 0.6 (0.55 to 0.65) 0.89
Values are given as median (interquartile range) unless otherwise noted. Significant correlations (P < 0.05) are marked in bold. IGF-1, 
insulin-like growth factor-1.
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insulin levels and results in growth failure.1–3 SGA is 
most commonly thought to be a malnourished condition 
in utero; thus, the results of this study are in accordance 
with previous reports.

No difference was observed in the mRNA expres-
sion of IR and IGF1R. In studies using fetal pig adipose 
tissue35 and fetal sheep tissues (gut, placentas, and liv-
er),32, 36 no significant difference was observed between 
AGA and intrauterine growth restriction conditions 
with respect to INSR and IGF1R mRNA expression. In 
contrast, previous studies demonstrated that hypoglyce-
mia in SGA neonates was caused by hyperinsulinemia 
and insulin sensitivity.37, 38 High levels of insulin and 
IGF are known to decrease protein and mRNA expres-
sion of IR and IGF-1R.39 Our findings suggest that the 
SGA prenatal neonates were not exposed to hyperinsu-
linemia, at least in fetal cord blood, which is consistent 
with the results of a previous study.24 Furthermore, it is 
unclear whether low serum levels of IGF-1 and insulin 
influence INSR and IGF1R mRNA transcription. Our 
findings suggest that lower serum levels of IGF-1 and 
insulin do not change INSR and IGF1R mRNA expres-
sion levels in cord blood.

In our study, GLUT4 mRNA expression in the cord 
blood was significantly higher in the preterm SGA than 
in the preterm AGA, and the expression in the preterm 
SGA with hypoglycemia was significantly higher than 
that in the hypoglycemic preterm AGA. However, a 
previous term study on term infants showed a slight 
increase in GLUT4 mRNA expression, but without 
significance.24 GLUT4 is an important protein that fa-
cilitates the uptake of extracellular glucose into the cell. 
This insulin-regulated glucose transporter is primarily 
observed in adipose tissues and muscles.40 As the SGA 
subjects had low serum insulin levels, the expression of 
GLUT4 mRNA seemed to be increased independently 
of insulin. Hence, our data correlating GLUT4 mRNA 
levels to preterm SGA might be related to a different 
factor. Although the underlying mechanism is uncertain, 
some reports have shown a relationship between nutri-
tional status and GLUT4 mRNA.35, 41–43 For instance, 
Gondret et al. reported that term neonatal adipose tissue 
increases GLUT4 mRNA expression with spontaneous 
intrauterine growth restriction in pigs during the last 
trimester of pregnancy.35 Gavete et al. reported that 
GLUT4 and GLUT1 expression in 10-day-old SGA rat 
pup muscles were not influenced; however, fractionation 
studies have shown improvements in insulin-stimulated 
GLUT4 translocation to the plasma membrane along 
with a high insulin sensitivity and an increase in 
tyrosine-phosphorylated insulin receptor and IRS1.44 
Toyoshima et al. also reported that protein deprivation 
upregulates the IR/IRS/PI3K/mTORC1 pathway in the 
muscles and liver of rats, leading to increased insulin 
sensitivity and improved glucose uptake.45 These stud-
ies suggest that undernutrition induces improved glu-
cose uptake and increased insulin sensitivity in the early 
phase. However, the reason for the increased GLUT4 
mRNA expression being observed only in preterm SGA 
remains unclear, and further studies are needed to sup-
port this hypothesis.

We show that GLUT4 and IRS2 mRNA expres-
sion differed between our previous term study and this 
preterm study, whereas they showed a similar trend. 
Moreover, preterm and SGA infants have similar glu-
cose metabolism characteristics (e.g., hypoglycemia).46 
Meanwhile, differences between preterm and SGA 
neonates with malnutrition have also been reported. For 
instance, it has been reported that intrauterine growth 
failure due to malnutrition reduces β cell mass.47 
Further, the system for glucose metabolism, including 
the glucose transporter, gradually matures according to 
gestational age,48 although there is no study on mRNA 
expression of IRS2 and GLUT4 in preterm cord blood. 
Taken together, these findings suggest that “preterm 

Fig. 3. Difference of each mRNA expression between AGA and 
SGA. IGF1R, INSR, IRS1, IRS2, and GLUT4 mRNA expression 
levels in cord blood samples from AGA (n = 34) and SGA (n = 7) 
neonates were measured using real-time PCR and analyzed using 
the 2-ΔΔCt method. The average expression of β-actin mRNA in 
AGA neonates with normoglycemia was used as a control. The 
results are presented as mean ± SE. *P < 0.05 (Welch t-test). 
AGA, appropriate-for-gestational age; SGA, small-for-gestational 
age.
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SGA” indicates the combination of prematurity and 
malnutrition, and our results and previous findings point 
to the possibility of different pathological conditions 
between preterm SGA and term SGA.

Our study has some limitations that need to be 

addressed. First, the sample size was small. Out of the 7 
SGA patients, there were only 3 patients without and 4 
with hypoglycemia. Moreover, we analyzed the mRNA 
expression at different time points in the previous term 
study and could not analyze the expression of SLC2A2 

Fig. 4. Comparison of mRNA levels among the combinations 
of AGA/SGA and normoglycemia/hyperglycemia. (A) IGF1R, 
(B) INSR, (C) IRS1, (D) IRS2, and (E) GLUT4 mRNA expression 
levels in cord blood samples from AGA with normoglycemia (n = 
19), AGA with hypoglycemia (n = 15), SGA with normoglycemia 
(n = 3), and SGA with hypoglycemia (n = 4) neonates are mea-
sured using real-time PCR and analyzed using the 2- ΔΔCt method. 
The average expression of β-actin mRNA in AGA neonates with 
normoglycemia was used as a control. The results are presented 
as mean ± SE. *P < 0.05 (Steel-Dwass test, as post-hoc test, 
following Kruskal-Wallis test). AGA, appropriate-for-gestational 
age; SGA, small-for-gestational age.
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mRNA due to technical limitations. In addition, we 
used neonatal umbilical cord blood cells that consist of 
several components (monocytes, lymphocytes, and red 
cells). We analyzed the amount of mRNA expression 
but did not assess the effects of cell type on this expres-
sion. Accordingly, there is also the limitation of gener-
alization of the results. Therefore, we need to increase 
the sample size to assess the exact mRNA expression 
using preterm and full-term samples at the same time, 
and acquire adequate tissue for accurate assessment of 
insulin/IGF signaling in prenatal neonates.

In summary, we investigated insulin/IGF signal-
ing in the cord blood of preterm infants and observed 
that SGA preterm conditions altered the components 
associated with the insulin/IGF signaling pathway, but 
not in the same way as observed in term SGA. Our data 
as well as previous studies, suggest that this may be due 
to prematurity, adaptation to malnutrition, or both. Our 
study suggests the possibility of differences between 
the pathological conditions in preterm and term SGA. 
Further studies are needed to fully understand the regu-
lation of the insulin/IGF signaling pathway during fetal 
development.
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