9 research outputs found

    Control of mobile robot by switching traveling direction and control gain

    No full text
    Abstract The control method based on the time-state control form has been proposed to stabilize the chained system, which is a canonical-form nonlinear system. In this study, the control method is used for controlling a mobile robot in auto-parking situations. The proposed controller includes a parameter that is allowed to switch at arbitrary times without loss of the stability of the system. The robot employing the proposed controller reaches the target position by switching its traveling direction to avoid collisions with obstacles. However, the shape of the robot gives a problem. We resolve this by using the switchable parameter included in the proposed controller, and show the availability of switching the parameter. Furthermore, the appropriate switching of the traveling direction and the parameter enables the robot to reach the target faster. Thus, we search the appropriate values of the parameter and the switching points of the traveling direction using the genetic algorithm. In the auto-parking experiments that incorporate the search results, the robot can reach the target position faster

    Construction of a Multi-Label Classifier for Extracting Multiple Incident Factors From Medication Incident Reports in Residential Care Facilities: Natural Language Processing Approach

    No full text
    BackgroundMedication safety in residential care facilities is a critical concern, particularly when nonmedical staff provide medication assistance. The complex nature of medication-related incidents in these settings, coupled with the psychological impact on health care providers, underscores the need for effective incident analysis and preventive strategies. A thorough understanding of the root causes, typically through incident-report analysis, is essential for mitigating medication-related incidents. ObjectiveWe aimed to develop and evaluate a multilabel classifier using natural language processing to identify factors contributing to medication-related incidents using incident report descriptions from residential care facilities, with a focus on incidents involving nonmedical staff. MethodsWe analyzed 2143 incident reports, comprising 7121 sentences, from residential care facilities in Japan between April 1, 2015, and March 31, 2016. The incident factors were annotated using sentences based on an established organizational factor model and previous research findings. The following 9 factors were defined: procedure adherence, medicine, resident, resident family, nonmedical staff, medical staff, team, environment, and organizational management. To assess the label criteria, 2 researchers with relevant medical knowledge annotated a subset of 50 reports; the interannotator agreement was measured using Cohen κ. The entire data set was subsequently annotated by 1 researcher. Multiple labels were assigned to each sentence. A multilabel classifier was developed using deep learning models, including 2 Bidirectional Encoder Representations From Transformers (BERT)–type models (Tohoku-BERT and a University of Tokyo Hospital BERT pretrained with Japanese clinical text: UTH-BERT) and an Efficiently Learning Encoder That Classifies Token Replacements Accurately (ELECTRA), pretrained on Japanese text. Both sentence- and report-level training were performed; the performance was evaluated by the F1-score and exact match accuracy through 5-fold cross-validation. ResultsAmong all 7121 sentences, 1167, 694, 2455, 23, 1905, 46, 195, 1104, and 195 included “procedure adherence,” “medicine,” “resident,” “resident family,” “nonmedical staff,” “medical staff,” “team,” “environment,” and “organizational management,” respectively. Owing to limited labels, “resident family” and “medical staff” were omitted from the model development process. The interannotator agreement values were higher than 0.6 for each label. A total of 10, 278, and 1855 reports contained no, 1, and multiple labels, respectively. The models trained using the report data outperformed those trained using sentences, with macro F1-scores of 0.744, 0.675, and 0.735 for Tohoku-BERT, UTH-BERT, and ELECTRA, respectively. The report-trained models also demonstrated better exact match accuracy, with 0.411, 0.389, and 0.399 for Tohoku-BERT, UTH-BERT, and ELECTRA, respectively. Notably, the accuracy was consistent even when the analysis was confined to reports containing multiple labels. ConclusionsThe multilabel classifier developed in our study demonstrated potential for identifying various factors associated with medication-related incidents using incident reports from residential care facilities. Thus, this classifier can facilitate prompt analysis of incident factors, thereby contributing to risk management and the development of preventive strategies
    corecore