32 research outputs found

    The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation

    Get PDF
    The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity

    The PTEN Phosphatase Controls Intestinal Epithelial Cell Polarity and Barrier Function: Role in Colorectal Cancer Progression

    Get PDF
    The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells

    The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells.

    Get PDF
    During epithelialization, cell adhesions and polarity must be established to maintain tissue assemblies and separate the biological compartments in the body. However, the molecular basis of epithelial morphogenesis, in particular, a role of cell adhesion molecules in epithelial differentiation from stem cells, remains unclear. Here, we show that the stable and conditional expression of a tight-junction protein, claudin-6 (Cldn6), triggers epithelial morphogenesis in mouse F9 stem cells. We also demonstrate that Cldn6 induces the expression of other tight-junction and microvillus molecules including Cldn7, occludin, ZO-1α+, and ezrin/radixin/moesin-binding phosphoprotein50. These events were inhibited by attenuation of Cldn6 using RNA interference or the C-terminal half of Clostridium Perfringens enterotoxin. Furthermore, similar results were obtained in mouse embryonic stem cells. Thus, we have uncovered that the Cldn6 functions as a novel cue to induce epithelial differentiation

    Preeclampsia Up-Regulates Angiogenesis-Associated MicroRNA (i.e., miR-17, -20a, and -20b) That Target Ephrin-B2 and EPHB4 in Human Placenta

    No full text
    ContextPlacental angiogenesis contributes to the pathogenesis of preeclampsia (PE) that affects 5-8% of all human pregnancies. MicroRNA (miRNA) are a class of noncoding 21- to 25-nucleotide RNA that negatively regulate gene expression posttranscriptionly.ObjectiveThe aim of this study was to test the hypothesis that miRNA are differentially expressed in healthy term and PE placentas and a subclass of angiogenesis-associated miRNA are increased by PE.DesignTotal miRNA were extracted from villous placental tissues from healthy term and severe preeclamptic pregnancies. Differential miRNA expression was analyzed by microarray and real-time quantitative PCR. Angiogenesis-associated miRNA were analyzed by target prediction databases. In situ hybridization was used to localize miRNA. Target verification was performed by transfection of miRNA precursors or antagomirs into endothelial and BeWo cells and luciferase reporter assays.ResultsThree highly expressed miRNA (miR-17, -20a, and -20b) were found significantly increased in PE compared with healthy term placentas (n = 10 per group). They target on the same group of genes important for angiogenesis. miR-20b was expressed primarily in villous syncytiotrophoblasts in term placenta. Overexpression or inhibition of miR-20b differentially regulated mRNA expression of those genes in endothelial vs. trophoblast cells. Luciferase reporter assay showed that miR-20b targets EPHB4 and ephrin-B2 that have been shown to be critical for early human placental development. Placental ephrin-B2 mRNA was significantly down-regulated in PE compared with normotensive pregnancies.ConclusionmiR-17, miR-20a, and miR-20b are differentially regulated in human placentas by PE. They regulate EPHB4 and ephrin-B2 expression in trophoblast and endothelial cells via the same "seed" sequence, suggesting their roles in early placental development

    Cldn6 triggers epithelial differentiation in mouse F9 stem cells.

    No full text
    <p>(A) Western blot showing expression of Cldn6 protein in 10 clones of F9:Cldn6 cells and control F9 cells. (B and C) Morphological appearance and localization of Cldn6, ZO-1 and E-cadherin (E-Cad) in control F9 and F9:Cldn6 cells. Scale bars, (A) 50 µm; (B) 20 µm. (D) RT-PCR for the indicated molecules in 4 clones of F9:Cldn6 cells and F9 L32T2:HNF4α cells treated for 72 h with the vehicle or 1.0 µg/ml doxycycline (Dox). Quantification of the mRNA levels is shown in the histograms (mean+SD; <i>n</i> = 4). *<i>P</i><0.05; **<i>P</i><0.001 compared with values of the lane 5. (E) Western blot for the indicated molecules in F9:Cldn6 cells and F9 L32T2:HNF4α cells treated for 72 h with the vehicle or 1.0 µg/ml Dox. Quantification of the protein levels is shown in the histograms.</p

    Cldn6 induces the formation of tight-junction strands and microvilli in F9 stem cells.

    No full text
    <p>(A) Freeze-fracture EM micrograph of F9:Cldn6 cells. Scale bar, 100 nm. (B) SEM micrographs of control F9 and F9:Cldn6 cells. Scale bars, left 5 µm; right 1 µm.</p
    corecore