148 research outputs found

    Short-Term Variability of PKS1510-089

    Get PDF
    We searched a short-term radio variability in an active galactic nucleus PKS 1510-089. A daily flux monitoring for 143 days at 8.4 GHz was performed, and VLBI observations at 8.4, 22, and 43 GHz were carried out 4 times during the flux monitoring period. As a result, variability with time scale of 20 to 30 days was detected. The variation patterns were well alike on three frequencies, moreover those at 22 and 43 GHz were synchronized. These properties support that this short-term variability is an intrinsic one. The Doppler factor estimated from the variability time scale is 47. Since the Doppler factor is not extraordinary large for AGN, such intrinsic variability with time scale less than 30 days would exist in other AGNs.Comment: 14 pages, 4 figure

    Clustering Malicious DNS Queries for Blacklist-Based Detection

    Get PDF
    Some of the most serious threats to network security involve malware. One common way to detect malware-infected machines in a network is by monitoring communications based on blacklists. However, such detection is problematic because (1) no blacklist is completely reliable, and (2) blacklists do not provide the sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. In this paper, we propose a malicious DNS query clustering approach for blacklist-based detection. Unlike conventional classification, our cause-based classification can efficiently analyze malware communications, allowing infected machines in the network to be addressed swiftly

    A Superficial Analysis Approach for Identifying Malicious Domain Names Generated by DGA Malware

    Get PDF
    Some of the most serious security threats facing computer networks involve malware. To prevent malware-related damage, administrators must swiftly identify and remove the infected machines that may reside in their networks. However, many malware families have domain generation algorithms (DGAs) to avoid detection. A DGA is a technique in which the domain name is changed frequently to hide the callback communication from the infected machine to the command-and-control server. In this article, we propose an approach for estimating the randomness of domain names by superficially analyzing their character strings. This approach is based on the following observations: human-generated benign domain names tend to reflect the intent of their domain registrants, such as an organization, product, or content. In contrast, dynamically generated malicious domain names consist of meaningless character strings because conflicts with already registered domain names must be avoided; hence, there are discernible differences in the strings of dynamically generated and human-generated domain names. Notably, our approach does not require any prior knowledge about DGAs. Our evaluation indicates that the proposed approach is capable of achieving recall and precision as high as 0.9960 and 0.9029, respectively, when used with labeled datasets. Additionally, this approach has proven to be highly effective for datasets collected via a campus network. Thus, these results suggest that malware-infected machines can be swiftly identified and removed from networks using DNS queries for detected malicious domains as triggers

    Practicality Verification of an Application Virtualization System Assuming Use of BYOD Environment

    Get PDF
    From 2019, We - Kyushu Institute of Technology started to bring and use students’ laptops (called “BYOD on education”) in some lectures. In the same timing, we have replaced our information systems for education and research use (we call “Education systems”). The new system is turned to support our BYOD environment on education scene. For one thing that, “Application virtualization system” has been adopted. It behaves as “the application was installed on PCs” without some installation procedures. It can be expected to enhance lectures such as some exercise using software. Before providing application virtualization system, some practicality verification is needed. We adopt this system to 30 different software for education and research use. After verification, we judged that 25 of 30 software can be adopting for BYOD environment on education scene

    Inhibition of motility and invasiveness of renal cell carcinoma induced by short interfering RNA transfection of β1,4GalNAc transferase

    Get PDF
    AbstractHuman renal cell carcinoma (RCC) has been characterized by remarkable changes in ganglioside composition. TOS1 cells, typical of metastatic RCC, are characterized by predominance of GM2 as monosialoganglioside, and β1,4GalNAc disialyl-Lc4 (RM2 antigen) as disialoganglioside [J. Biol. Chem. 276 (2001) 16695]. In order to observe the functional role of gangliosides in RCC malignancy, TOS1 cells were transfected with short interfering RNA (siRNA) based on open reading frame sequence of β1,4GalNAc transferase (β1,4GalNAc-T), and its disordered sequence of siRNA (dsiRNA) as control. In siRNA transfectant, β1,4GalNAc-T mRNA level and GM2 expression were greatly reduced, whereby GM3 expression appeared. In contrast, RM2 antigen level was unchanged, even though it has the same β1,4GalNAc epitope at the terminus. dsiRNA transfectant showed no change of β1,4GalNAc-T mRNA and did not express GM3. Concomitant with reduction of GM2 and appearance of GM3, siRNA transfectant showed greatly reduced motility and invasiveness, although growth rate was unaltered. Both transfectants with siRNA and dsiRNA expressed the same level of tetraspanin CD9. Since CD9/GM3 complex is known to reduce integrin-dependent motility and invasiveness [Biochemistry 40 (2001) 6414], it is plausible that motility and invasiveness of siRNA transfectant of TOS1 cells may be reduced by enhanced formation of such complex

    An Approach for Identifying Malicious Domain Names Generated by Dictionary-Based DGA Bots

    Get PDF
    Computer networks are facing serious threats from the emergence of sophisticated new DGA bots. These DGA bots have their own dictionary, from which they concatenate words to dynamically generate domain names that are difficult to distinguish from human-generated domain names. In this letter, we propose an approach for identifying the callback communications of DGA bots based on relations among the words that constitute the character string of each domain name. Our evaluation indicates high performance, with a recall of 0.9977 and a precision of 0.9869

    Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system

    Get PDF
    In this study, to better simulate underground coal gasification (UCG), an artificial coal seam was constructed to use as a simulated underground gasifier, which comprised coal blocks excavated from the coal seam. This study reports the process and results of three independently designed experiments using coaxial-hole and linking-hole UCG models: (a) a coaxial model using a coaxial pipeline as a gasification channel, (b) a coaxial model using the coaxial pipeline combined with a bottom cross-hole, and (c) a linking-hole model using a horizontal V-shaped cross-hole. In the present work, the fracturing activities and cavity growth inside the reactor were monitored with acoustic emission (AE) technologies. During the process, the temperature profiles, gas production rate, and gas content were measured successively. The results show that AE activities monitored during UCG process are significantly affected by operational variables such as feed gas rate, feed gas content, and linking-hole types. Moreover, the amount of coal consumed during UCG process were estimated using both of the stoichiometric approach and balance computation of carbon (C) based on the product gas contents. A maximum error of less than 10% was observed in these methods, in which the gas leakage was also considered. This demonstrates that the estimated results using the proposed stoichiometric approach could be useful for evaluating energy recovery during UCG

    High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease

    Get PDF
    Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment
    corecore