125 research outputs found

    Phosphorylation by Aurora B Converts MgcRacGAP to a RhoGAP during Cytokinesis

    Get PDF
    AbstractCell division is finely controlled by various molecules including small G proteins and kinases/phosphatases. Among these, Aurora B, RhoA, and the GAP MgcRacGAP have been implicated in cytokinesis, but their underlying mechanisms of action have remained unclear. Here, we show that MgcRacGAP colocalizes with Aurora B and RhoA, but not Rac1/Cdc42, at the midbody. We also report that Aurora B phosphorylates MgcRacGAP on serine residues and that this modification induces latent GAP activity toward RhoA in vitro. Expression of a kinase-defective mutant of Aurora B disrupts cytokinesis and inhibits phosphorylation of MgcRacGAP at Ser387, but not its localization to the midbody. Overexpression of a phosphorylation-deficient MgcRacGAP-S387A mutant, but not phosphorylation-mimic MgcRacGAP-S387D mutant, arrests cytokinesis at a late stage and induces polyploidy. Together, these findings indicate that during cytokinesis, MgcRacGAP, previously known as a GAP for Rac/Cdc42, is functionally converted to a RhoGAP through phosphorylation by Aurora B

    Detailed Structural Analysis of Lipids Directly on Tissue Specimens Using a MALDI-SpiralTOF-Reflectron TOF Mass Spectrometer

    Get PDF
    Direct tissue analysis using a novel tandem time-of-flight (TOF-TOF) mass spectrometer is described. This system consists of a matrix-assisted laser desorption/ionization ion source, a spiral ion trajectory TOF mass spectrometer “SpiralTOF (STOF)”, a collision cell, and an offset parabolic reflectron (RTOF). The features of this system are high precursor ion selectivity due to a 17-m flight path length in STOF and elimination of post-source decay (PSD) ions. The acceleration energy is 20 keV, so that high-energy collision-induced dissociation (HE-CID) is possible. Elimination of PSD ions allows observation of the product ions inherent to the HE-CID process. By using this tandem TOF instrument, the product ion spectrum of lipids provided detailed structural information of fatty acid residues

    Distinct Characteristics of Circulating Vascular Endothelial Growth Factor-A and C Levels in Human Subjects

    Get PDF
    The mechanisms that lead from obesity to atherosclerotic disease are not fully understood. Obesity involves angiogenesis in which vascular endothelial growth factor-A (VEGF-A) plays a key role. On the other hand, vascular endothelial growth factor-C (VEGF-C) plays a pivotal role in lymphangiogenesis. Circulating levels of VEGF-A and VEGF-C are elevated in sera from obese subjects. However, relationships of VEGF-C with atherosclerotic risk factors and atherosclerosis are unknown. We determined circulating levels of VEGF-A and VEGF-C in 423 consecutive subjects not receiving any drugs at the Health Evaluation Center. After adjusting for age and gender, VEGF-A levels were significantly and more strongly correlated with the body mass index (BMI) and waist circumference than VEGF-C. Conversely, VEGF-C levels were significantly and more closely correlated with metabolic (e.g., fasting plasma glucose, hemoglobin A1c, immunoreactive insulin, and the homeostasis model assessment of insulin resistance) and lipid parameters (e.g., triglycerides, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C)) than VEGF-A. Stepwise regression analyses revealed that independent determinants of VEGF-A were the BMI and age, whereas strong independent determinants of VEGF-C were age, triglycerides, and non-HDL-C. In apolipoprotein E-deficient mice fed a high-fat-diet (HFD) or normal chow (NC) for 16 weeks, levels of VEGF-A were not significantly different between the two groups. However, levels of VEGF-C were significantly higher in HFD mice with advanced atherosclerosis and marked hypercholesterolemia than NC mice. Furthermore, immunohistochemistry revealed that the expression of VEGF-C in atheromatous plaque of the aortic sinus was significantly intensified by feeding HFD compared to NC, while that of VEGF-A was not. In conclusion, these findings demonstrate that VEGF-C, rather than VEGF-A, is closely related to dyslipidemia and atherosclerosis

    Porous Plug Phase Separator and Superfluid Film Flow Suppression System for the Soft X-Ray Spectrometer Onboard Hitomi

    Get PDF
    When using superfluid helium in low gravity environments, porous plug phase separators are commonly used to vent boiloff gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ~ 30 ug/s, equivalent to ~ 0.7 mW heat load. It is therefore critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to <2 ug/s, corresponding to a loss of cooling capacity of <40 uW. The design adopts the same general design as implemented for Astro-E and E2, using a vent system composed of a porous plug, combined with an orifice, a heat exchanger, and knife-edge devices. In this paper, design, on-ground testing results and in-orbit performance are described

    Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes

    No full text
    Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted

    Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    No full text
    Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling

    Involvement of the protein kinase Akt2 in insulin-stimulated Rac1 activation leading to glucose uptake in mouse skeletal muscle.

    No full text
    Translocation of the glucose transporter GLUT4 to the sarcolemma accounts for glucose uptake in skeletal muscle following insulin administration. The protein kinase Akt2 and the small GTPase Rac1 have been implicated as essential regulators of insulin-stimulated GLUT4 translocation. Several lines of evidence suggest that Rac1 is modulated downstream of Akt2, and indeed the guanine nucleotide exchange factor FLJ00068 has been identified as an activator of Rac1. On the other hand, the mechanisms whereby Akt2 and Rac1 are regulated in parallel downstream of phosphoinositide 3-kinase are also proposed. Herein, we aimed to provide additional evidence that support a critical role for Akt2 in insulin regulation of Rac1 in mouse skeletal muscle. Knockdown of Akt2 by RNA interference abolished Rac1 activation following intravenous administration of insulin or ectopic expression of a constitutively activated phosphoinositide 3-kinase mutant. The activation of another small GTPase RalA and GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated form of phosphoinositide 3-kinase, but not Rac1, were also diminished by downregulation of Akt2 expression. Collectively, these results strongly support the notion that Rac1 acts downstream of Akt2 leading to the activation of RalA and GLUT4 translocation to the sarcolemma in skeletal muscle
    corecore