1,009 research outputs found

    A new, globally convergent Riemannian conjugate gradient method

    Get PDF
    This article deals with the conjugate gradient method on a Riemannian manifold with interest in global convergence analysis. The existing conjugate gradient algorithms on a manifold endowed with a vector transport need the assumption that the vector transport does not increase the norm of tangent vectors, in order to confirm that generated sequences have a global convergence property. In this article, the notion of a scaled vector transport is introduced to improve the algorithm so that the generated sequences may have a global convergence property under a relaxed assumption. In the proposed algorithm, the transported vector is rescaled in case its norm has increased during the transport. The global convergence is theoretically proved and numerically observed with examples. In fact, numerical experiments show that there exist minimization problems for which the existing algorithm generates divergent sequences, but the proposed algorithm generates convergent sequences.Comment: 22 pages, 8 figure

    Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry

    Full text link
    We consider a model of Dirac fermions in 2+12+1 dimensions with dynamically generated, anticommuting SO(3) N\'eel and Z2_2 Kekul\'e mass terms that permits sign-free quantum Monte Carlo simulations. The phase diagram is obtained from finite-size scaling and includes a direct and continuous transition between the N\'eel and Kekul\'e phases. The fermions remain gapped across the transition, and our data support an emergent SO(4) symmetry unifying the two order parameters. While the bare symmetries of our model do not allow for spinon-carrying Z3_3 vortices in the Kekul\'e mass, the emergent SO(4) invariance permits an interpretation of the transition in terms of deconfined quantum criticality. The phase diagram also features a tricritical point at which N\'eel, Kekul\'e, and semimetallic phases meet. The present, sign-free approach can be generalized to a variety of other mass terms and thereby provides a new framework to study exotic critical phenomena.Comment: 5 pages, 5 figures, to appear in Phys. Rev. Let

    Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Full text link
    The absence of negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the Honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and anti-ferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.Comment: 6 pages, 5 figures, supplemental materia
    • …
    corecore