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()

This article deals with the conjugate gradient method on a Riemannian manifold with interest
in global convergence analysis. The existing conjugate gradient algorithms on a manifold en-
dowed with a vector transport need the assumption that the vector transport does not increase
the norm of tangent vectors, in order to confirm that generated sequences have a global conver-
gence property. In this article, the notion of a scaled vector transport is introduced to improve
the algorithm so that the generated sequences may have a global convergence property under
a relaxed assumption. In the proposed algorithm, the transported vector is rescaled in case
its norm has increased during the transport. The global convergence is theoretically proved
and numerically observed with examples. In fact, numerical experiments show that there exist
minimization problems for which the existing algorithm generates divergent sequences, but
the proposed algorithm generates convergent sequences.
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1. Introduction

The conjugate gradient method was first developed by Hestenes and Stiefel as a
tool for solving the linear equation Ax = b, where A is an n × n positive definite
matrix [7]. The strategy of the linear conjugate gradient method is to minimize
the quadratic function xT Ax/2− bT x of x in the successive search directions which
are generated in such a manner that those directions are mutually conjugate with
respect to A and eventually span the whole Rn. As this method is generalized
to be applicable to functions which are not restricted to those quadratic in x,
the conjugate gradient method in its original form is particularly called the linear
conjugate gradient method.

According to a nonlinear conjugate gradient method for minimizing a smooth
function f which is not necessarily quadratic, the search direction ηk is determined
by

ηk = − grad f(xk) + βkηk−1, (1.1)
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where βk is a parameter to be defined suitably. Fletcher and Reeves [5] proposed
to define βk by βk := ‖grad f(xk)‖2/‖grad f(xk−1)‖2 (see [8] for another way to
determine βk).

On the other hand, iterative optimization methods on Rn have been developed
so as to be applicable on Riemannian manifolds [1, 4]. Those generalized methods
are called Riemannian optimization methods, which provide procedures for mini-
mizing objective functions defined on a Riemannian manifold M . In a Riemannian
optimization method, the usual line search should be replaced [1], as the concept
of a line is generalized on a Riemannian manifold. Absil, Mahony, and Sepulchre
proposed to use a retraction map to perform a search on a curve on M in place
of the line search. As for the conjugate gradient method, Smith provided in [11] a
conjugate gradient method on M along with other optimization algorithms on M .
The difficulty we encounter in generalizing the conjugate gradient method to that
on a manifold is that Eq. (1.1) makes no longer sense. This is because grad f(xk)
and ηk−1 belong to tangent spaces at different points on M in general, so that they
cannot be added. Smith proposed to use the parallel translation along the geodesic
at each iteration in order to make possible the addition of two tangent vectors
and thereby to extend the iteration procedure (1.1). However, using the parallel
translation on M is not computationally effective in general. A way to perform the
conjugate gradient method on M in an efficient manner is to use a vector trans-
port [1]. The global convergence in the conjugate gradient method with a vector
transport on M has been recently discussed by Ring and Wirth [9]. They proved
the global convergence under the condition that the vector transport in use does
not increase the norm of the search direction vector. On the contrary, the present
article provides numerical evidence to show that if the assumption is not satisfied,
the conjugate gradient method with a general vector transport may fail to generate
a globally converging series. In order to relax the assumption in [9], the notion of a
“scaled” vector transport is introduced in this article and a new conjugate gradient
algorithm is proposed with only a mild computational overhead per iteration.

The organization of this paper is as follows: The scaled vector transport is in-
troduced in Section 2 after a brief review of some useful existing concepts. How to
compute the step size is also discussed in this section. In Section 3, a brief review
is made of the conjugate gradient method on a Riemannian manifold M , and then
a new algorithm is proposed, in which the scaled vector transport is applied only if
the vector transport increases the norm of the previous search direction. In Section
4, the global convergence for the proposed algorithm is proved in a manner similar
to the usual one performed on Rn, where the scaled vector transport used on a fit-
ting occasion makes a generated sequence into a globally convergent one. Section 5
provides numerical experiments on simple problems which the existing algorithm
cannot solve efficiently but the proposed algorithm can do. The numerical experi-
ments show why the present algorithm can generate convergent sequences. Section
6 includes concluding remarks. It is shown in Appendix A that the Lipschitzian
condition referred to in Subsection 4.1 is satisfied for some practical Riemannian
optimization problems.

2. Setup for Riemannian optimization

2.1. Retraction

An unconstrained optimization problem on a Riemannian manifold M is described
as follows:
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Problem 2.1

minimize f(x), (2.1)

subject to x ∈ M. (2.2)

If M is the Euclidean space Rn, the line search is performed with the updating
formula

xk+1 = xk + αkηk, (2.3)

where xk, xk+1 ∈ Rn are a current point and an unknown next point, respectively,
and where ηk ∈ Rn and αk > 0 are a search direction at xk and a step size, respec-
tively. However, the line search (2.3) does not make sense on a general manifold
M . In order to generalize the line search (2.3) on Rn to that on M , the search
direction ηk should be taken as a tangent vector in Txk

M , and the addition in
Eq. (2.3) should be replaced by another suitable operation. A natural alternative
to the line search is a search along the geodesic emanating from xk in the direction
of ηk, but the geodesic will cause computational difficulty except for a few par-
ticular manifolds where the geodesics admit a tractable closed-form expression. A
computationally efficient way is to use the following retraction map introduced in
[1].

Definition 2.2 Let M and TM be a manifold and the tangent bundle of M , respec-
tively. Let R : TM → M be a smooth map and Rx the restriction of R to TxM .
The R is called a retraction on M , if it has the following properties:

(1) Rx(0x) = x, where 0x denotes the zero element of TxM .
(2) With the canonical identification T0x

TxM ' TxM , Rx satisfies

DRx(0x) = idTxM , (2.4)

where DRx(0x) denotes the derivative of Rx at 0x, and idTxM the identity
map on TxM .

As is easily seen, the exponential map on M is a typical example of a retrac-
tion. If we can find a computationally preferable retraction, we can perform an
optimization procedure as follows:

Algorithm 2.1 The general framework of optimization methods for Problem 2.1
on a Riemannian manifold M

1: Choose an initial point x0 ∈ M .
2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk ∈ Txk

M and the step size αk > 0.
4: Compute the next iterate by xk+1 := Rxk

(αkηk), where R is a retraction on
M .

5: end for

The choice of a search direction and a step size characterizes the individual opti-
mization method. We proceed to the vector transport in search for computationally
efficient conjugate gradient methods.
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2.2. Vector transport and scaled vector transport

In a (nonlinear) conjugate gradient method on the Euclidean space Rn, the search
directions ηk are chosen to be

ηk = − grad f(xk) + βkηk−1, k ≥ 0, (2.5)

where β0 = 0, and where βk with k ≥ 1 are determined in several possible manners.
For example, βk are determined by

βFR
k =

grad f(xk)T grad f(xk)
grad f(xk−1)T grad f(xk−1)

, (2.6)

or

βPR
k =

grad f(xk)T (grad f(xk) − grad f(xk−1))
grad f(xk−1)T grad f(xk−1)

, (2.7)

where FR and PR are abbreviations of Fletcher-Reeves and Polak-Ribière, respec-
tively [8].

However, if Rn is replaced by a Riemannian manifold M , grad f(xk) ∈ Txk
M and

ηk−1 ∈ Txk−1M belong to different tangent spaces, so that − grad f(xk)+βkηk−1 in
Eq. (2.5) does not make sense. The quantity grad f(xk)−grad f(xk−1) in Eq. (2.7)
makes no sense on M either. In order to modify the vector addition in Eqs. (2.5) and
(2.7) into a suitable operation on M , Smith proposed to use the parallel translation
of tangent vectors along a geodesic [11]. However, no computationally efficient
formula is known for the parallel translation along a geodesic even for the Stiefel
manifold except when it reduces to the sphere or the orthogonal group. Absil et
al. [1] proposed the notion of a vector transport as an alternative to the parallel
translation. The vector transport is a generalization of the parallel translation and
can enhance computational efficiency of algorithms, if defined suitably.

In this paper, we focus on the differentiated retraction T R as a vector transport,
which is defined to be

T R
ηx

(ξx) := DRx(ηx)[ξx], ηx, ξx ∈ TxM, (2.8)

where R is a retraction on M . We here note that T R satisfies the conditions in the
definition of a vector transport, as is easily verified [1].

In what follows, we assume that M is a Riemannian manifold and denote the
Riemannian metric evaluated at x ∈ M by 〈·, ·〉x. The norm of a tangent vector ξx ∈
TxM evaluated at x ∈ M is defined to be ‖ξx‖x =

√
〈ξx, ξx〉. We here have to note

that though the parallel translation is an isometry, a vector transport is not required
to preserve the norm of vectors in general. The differentiated retraction T R is not
always an isometry either. In analysing the convergence for the conjugate gradient
method later, it will be crucial whether the vector transport T R increases the norm
of vectors or not. In order to prevent the vector transport T R from increasing the
norm of vectors, we define the scaled vector transport T 0 : TM ⊕ TM → TM
associated with T R as follows:

Definition 2.3 Let R be a retraction on a Riemannian manifold M . Let T R be a
vector transport defined by (2.8) with respect to R. The scaled vector transport



August 7, 2013 Optimization GOPT-2013-0044.R2

Optimization 5

T 0 associated with T R is defined as

T 0
ηx

(ξx) =
‖ξx‖x

‖T R
ηx

(ξx)‖Rx(ηx)
T R

ηx
(ξx), ηx, ξx ∈ TxM. (2.9)

The scaled vector transport T 0 thus defined is no longer a vector transport since
it is not linear. However, T 0 satisfies

‖T 0
ηx

(ξx)‖Rx(ηx) = ‖ξx‖x, ηx, ξx ∈ TxM, (2.10)

which is a key property for the global convergence of the algorithm we will propose.

2.3. Strong Wolfe conditions

In computing the step size αk in the conjugate gradient method on Rn, the strong
Wolfe conditions are often used [8], which require αk to satisfy

f(xk + αkηk) ≤ f(xk) + c1αk grad f(xk)T ηk, (2.11)

|grad f (xk + αkηk)
T ηk| ≤ c2|grad f(xk)T ηk|, (2.12)

with 0 < c1 < c2 < 1. In particular, c1 and c2 are often taken so as to satisfy
0 < c1 < c2 < 1/2 in the conjugate gradient method. In order to extend the strong
Wolfe conditions on Rn to those on M , we start by reviewing the strong Wolfe
conditions (2.11) and (2.12). For a current point xk and a search direction ηk, one
performs a line search for the function defined by

φ(α) = f(xk + αηk), α > 0. (2.13)

Requiring αk to give a sufficient decrease in the value of f , one imposes the condi-
tion

φ(αk) ≤ φ(0) + c1αkφ
′(0), (2.14)

which yields (2.11). In order to prevent αk from being excessively short, the αk is
required to satisfy

|φ′(αk)| ≤ c2|φ′(0)|, (2.15)

which implies (2.12).
In order to generalize the strong Wolfe conditions to those on M , we define a

function φ on M , in an analogous manner to (2.13), to be

φ(α) = f (Rxk
(αηk)) , α > 0, (2.16)

where R is a retraction on M . The conditions (2.14) and (2.15) applied to (2.16)
give rise to

f (Rxk
(αkηk)) ≤ f(xk) + c1αk〈grad f(xk), ηk〉xk

, (2.17)

|〈grad f (Rxk
(αkηk)) , DRxk

(αkηk) [ηk]〉Rxk
(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk

|, (2.18)
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respectively, where 0 < c1 < c2 < 1. We call the conditions (2.17) and (2.18) the
strong Wolfe conditions. The existence of a step size satisfying (2.17) and (2.18) can
be shown by an almost verbatim repetition of that for the strong Wolfe conditions
on Rn (see [8]).

Proposition 2.4 Let M be a Riemannian manifold with a retraction R. If a smooth
objective function f on M is bounded below on {Rxk

(αηk)|α > 0} for xk ∈ M and
for a descent direction ηk ∈ Txk

M , and if constants c1 and c2 satisfy 0 < c1 < c2 <
1, then there exists a step size αk which satisfies the strong Wolfe conditions (2.17)
and (2.18).

We note that the strong Wolfe conditions (2.17) and (2.18) together with the
existence of a step size satisfying them are also discussed in [9].

We now look into the second condition (2.18). If we introduce a vector transport
T R as the differentiated retraction given by (2.8), then Eq. (2.18) can be expressed
as

|〈grad f (Rxk
(αkηk)) , T R

αkηk
(ηk)〉Rxk

(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk
|. (2.19)

An idea for further generalization of this condition to that in an algorithm with a
general vector transport T is to replace (2.19) by

|〈grad f (Rxk
(αkηk)) , Tαkηk

(ηk)〉Rxk
(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk

|. (2.20)

However, if T 6= T R, the existence of a step size satisfying both (2.17) and (2.20) is
unclear in general. In view of this, the differentiated retraction T R is considered to
be a natural choice of a vector transport T , for which a step size satisfying (2.17)
and (2.20) is shown to exist. In what follows, we use the differentiated retraction
T R and the scaled one T 0.

3. A new conjugate gradient method on a Riemannian manifold

If a Riemannian manifold M is given a retraction R and the corresponding vector
transport T R, a standard Fletcher-Reeves type conjugate gradient method on M
is described as follows [1, 9]:
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Algorithm 3.1 A standard Fletcher-Reeves type conjugate gradient method for
Problem 2.1 on a Riemannian manifold M

1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size αk > 0 satisfying the strong Wolfe conditions (2.17)

and (2.18) with 0 < c1 < c2 < 1/2. Set

xk+1 = Rxk
(αkηk) , (3.1)

where R is a retraction on M .
5: Set

βk+1 =
‖grad f(xk+1)‖2

xk+1

‖grad f(xk)‖2
xk

, (3.2)

ηk+1 = − grad f(xk+1) + βk+1T R
αkηk

(ηk), (3.3)

where T R is the differentiated retraction defined by (2.8).
6: end for

In [9], the convergence property of Algorithm 3.1 is verified under the assumption
that the inequality

‖T R
αkηk

(ηk)‖xk+1 ≤ ‖ηk‖xk
(3.4)

holds for all k ∈ N. However, the assumption does not always hold in general. For
example, the assumption does not hold on the sphere endowed with the ortho-
graphic retraction [2]. In Section 5, we will numerically treat such a case.

We wish to relax the assumption (3.4) by using a scaled vector transport. An
idea for improving Algorithm 3.1 is to replace T R by the scaled vector transport
T 0 defined by (2.9). However, this causes difficulty in computing effectively a step
size αk satisfying (2.20) with T = T 0.

A simple but effective idea for improving Algorithm 3.1 is that each step size
is always computed so as to satisfy the strong Wolfe conditions (2.17) and (2.18),
but the scaled vector transport T 0 is adopted if it is necessary for the purpose of
convergence. More specifically, we use the scaled vector transport T 0 only if the
vector transport T R increases the norm of the previous search direction vector,
that is, we introduce T (k) defined by

T (k)
αkηk

(ηk) =

{
T R

αkηk
(ηk), if ‖T R

αkηk
(ηk)‖xk+1 ≤ ‖ηk‖xk

,

T 0
αkηk

(ηk), otherwise,
(3.5)

as a substitute for T R in Step 5 of Algorithm 3.1. This idea is realized in the
following algorithm.
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Algorithm 3.2 A scaled Fletcher-Reeves type conjugate gradient method for
Problem 2.1 on a Riemannian manifold M

1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size αk > 0 satisfying the strong Wolfe conditions (2.17)

and (2.18) with 0 < c1 < c2 < 1/2. Set

xk+1 = Rxk
(αkηk) , (3.6)

where R is a retraction on M .
5: Set

βk+1 =
‖grad f(xk+1)‖2

xk+1

‖grad f(xk)‖2
xk

, (3.7)

ηk+1 = − grad f(xk+1) + βk+1T (k)
αkηk

(ηk), (3.8)

where T (k) is defined by (3.5), and where T R and T 0 are the differentiated
retraction and the associated scaled vector transport defined by (2.8) and
(2.9), respectively.

6: end for

We will prove in Section 4 the global convergence property of the proposed
algorithm, and give in Section 5 numerical examples in which the inequality (3.4)
does not hold for all k ∈ N but our Algorithm 3.2 indeed has an advantage in
generating convergent sequences.

4. Convergence analysis of the new algorithm

In this section, we verify the convergence property of Algorithm 3.2.

4.1. Zoutendijk’s theorem

Zoutendijk’s theorem about a series associated with search directions on Rn is not
only valid for the conjugate gradient method but also valid for general descent
algorithms [8]. This theorem can be generalized so as to be applicable to a general
descent algorithm (Algorithm 2.1) on a Riemannian manifold M . In the same
manner as in Rn, we define on a Riemannian manifold M the angle θk between the
steepest descent direction − grad f(xk) and the search direction ηk through

cos θk = − 〈grad f(xk), ηk〉xk

‖grad f(xk)‖xk
‖ηk‖xk

. (4.1)

Then, Zoutendijk’s theorem on M is stated as follows:

Theorem 4.1 Suppose that in Algorithm 2.1 on a Riemannian manifold M , a de-
scent direction ηk and a step size αk satisfy the strong Wolfe conditions (2.17) and
(2.18). If the objective function f is bounded below and of C1-class, and if there
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exists a Lipschitzian constant L > 0 such that

|D(f◦Rx)(tη)[η]−D(f◦Rx)(0)[η]| ≤ Lt, η ∈ TxM with ‖η‖x = 1, x ∈ M, t ≥ 0,
(4.2)

then the following series converges;

∞∑
k=0

cos2 θk‖grad f(xk)‖2
xk

< ∞. (4.3)

The proof of this theorem can be performed in the same manner as that for
Zoutendijk’s theorem on Rn. See [9] for more detail.

Remark 4.1 We remark that the inequality (4.2) is a weaker condition than the
Lipschitz continuous differentiability of f ◦ Rx. We will show in Appendix A that
Eq. (4.2) holds for objective functions in practical Riemannian optimization prob-
lems. A further discussion on the relation with the standard Lipschitz continuous
differentiability will be also made in the same appendix.

4.2. Global convergence

We first extend a lemma in [3] so as to be applicable to Algorithm 3.2 as follows:

Lemma 4.2 The search direction ηk determined in Algorithm 3.2 is a descent di-
rection satisfying

− 1
1 − c2

≤ 〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

≤ 2c2 − 1
1 − c2

. (4.4)

Proof : The proof runs by induction. For k = 0, the inequality (4.4) clearly holds
on account of

〈grad f(x0), η0〉x0

‖grad f(x0)‖2
x0

=
〈grad f(x0),− grad f(x0)〉x0

‖grad f(x0)‖2
x0

= −1. (4.5)

We here note that 0 < c1 < c2 < 1/2. Suppose that ηk is a descent direction
satisfying (4.4) for some k. Note that on account of Eq. (3.8) with Eq. (3.5), T R and
T (k) are related by ‖T (k)

αkηk(ηk)‖xk+1 ≤ ‖T R
αkηk

(ηk)‖xk+1 in each case. Since T (k)
αkηk(ηk)

and T R
αkηk

(ηk) are in the same direction with the inequality ‖T (k)
αkηk(ηk)‖xk+1 ≤

‖T R
αkηk

(ηk)‖xk+1 in norm, we have

|〈grad f(xk+1), T (k)
αkηk

(ηk)〉xk+1 | ≤ |〈grad f(xk+1), T R
αkηk

(ηk)〉xk+1 |. (4.6)

We also note that the vector transport T R is defined to be T R
ηx

(ξx) = DRx(ηx)[ξx]
in the algorithm. It then follows from (2.18) and (4.6) that

c2〈grad f(xk), ηk〉xk
≤ 〈grad f(xk+1), T (k)

αkηk
(ηk)〉xk+1 ≤ −c2〈grad f(xk), ηk〉xk

,
(4.7)

where it is to be noted that ηk is in a descent direction. The middle term in (4.4)
with k + 1 for k is computed as

〈grad f(xk+1), ηk+1〉xk+1

‖grad f(xk+1)‖2
xk+1

=
〈grad f(xk+1),− grad f(xk+1) + βk+1T

(k)
αkηk(ηk)〉xk+1

‖grad f(xk+1)‖2
xk+1
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= − 1 +
〈grad f(xk+1), T

(k)
αkηk(ηk)〉xk+1

‖grad f(xk)‖2
xk

, (4.8)

where the definition (3.7) of βk+1 has been used. Therefore, we obtain from (4.7)
and (4.8)

−1 + c2
〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

≤
〈grad f(xk+1), ηk+1〉xk+1

‖grad f(xk+1)‖2
xk+1

≤ −1− c2
〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

.

(4.9)
The inequality (4.4) for k + 1 immediately follows from the induction hypothesis.
¤

We proceed to the global convergence property of Algorithm 3.2. The convergence
of the conjugate gradient method has been already proved on Rn by Al-Baali [3].
Exploiting the idea of the proof used in [3], we show that Algorithm 3.2 generates
converging sequences on a Riemannian manifold.

Theorem 4.3 Consider Algorithm 3.2. If (4.2) and hence (4.3) hold, then

lim inf
k→∞

‖grad f(xk)‖xk
= 0. (4.10)

Proof : If grad f(xk) = 0 for some k, let k0 be the smallest integer among such k.
Then, we have βk0 = 0 and ηk0 = 0 from (3.7) and (3.8) with k0 = k + 1, so that
xk0+1 = Rxk0

(αk0ηk0) = Rxk0
(0) = xk0 . It then follows that grad f(xk) = 0 for all

k ≥ k0. Eq. (4.10) clearly holds in such a case.
We shall consider the case in which grad f(xk) 6= 0 for all k and prove (4.10) by

contradiction. Assume that (4.10) does not hold, that is, there exists a constant
γ > 0 such that

‖grad f(xk)‖xk
≥ γ > 0, ∀k ≥ 0. (4.11)

Now from (4.1) and (4.4), we obtain

cos θk ≥ 1 − 2c2

1 − c2

‖grad f(xk)‖xk

‖ηk‖xk

. (4.12)

On account of Thm. 4.1, Eqs. (4.3) and (4.12) are put together to provide

∞∑
k=0

‖grad f(xk)‖4
xk

‖ηk‖2
xk

< ∞. (4.13)

On the other hand, Eqs. (4.6), (4.4), and the strong Wolfe condition (2.18) are put
together to give

|〈grad f(xk), T (k−1)
αk−1ηk−1

(ηk−1)〉xk
| ≤|〈grad f(xk), T R

αk−1ηk−1
(ηk−1)〉xk

|

≤ − c2〈grad f(xk−1), ηk−1〉xk−1

≤ c2

1 − c2
‖grad f(xk−1)‖2

xk−1
. (4.14)

Using this inequality and the definition of βk, we obtain the recurrence inequality
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for ‖ηk‖2
xk

as follows:

‖ηk‖2
xk

=‖− grad f(xk) + βkT (k−1)
αk−1ηk−1

(ηk−1)‖2
xk

≤‖grad f(xk)‖2
xk

+ 2βk|〈grad f(xk), T (k−1)
αk−1ηk−1

(ηk−1)〉xk
| + β2

k‖T (k−1)
αk−1ηk−1

(ηk−1)‖2
xk

≤‖grad f(xk)‖2
xk

+
2c2

1 − c2
βk‖grad f(xk−1)‖2

xk−1
+ β2

k‖ηk−1‖2
xk−1

=c‖grad f(xk)‖2
xk

+ β2
k‖ηk−1‖2

xk−1
, (4.15)

where we have used the fact that ‖T (k−1)
αk−1ηk−1(ηk−1)‖xk

≤ ‖ηk−1‖xk−1 and put
c := (1 + c2)/(1 − c2) > 1. The successive use of this inequality together with the
definition of βk results in

‖ηk‖2
xk

≤c
(
‖grad f(xk)‖2

xk
+ β2

k‖grad f(xk−1)‖2
xk−1

+ · · · + β2
kβ2

k−1 · · ·β2
2‖grad f(x1)‖2

x1

)
+ β2

kβ2
k−1 · · ·β2

1‖η0‖2
x0

=c‖grad f(xk)‖4
xk

(
‖grad f(xk)‖−2

xk
+ ‖grad f(xk−1)‖−2

xk−1
+ · · · + ‖grad f(x1)‖−2

x1

)
+ ‖grad f(xk)‖4

xk
‖grad f(x0)‖−2

x0

<c‖grad f(xk)‖4
xk

k∑
j=0

‖grad f(xj)‖−2
xj

≤ c

γ2
‖grad f(xk)‖4

xk
(k + 1), (4.16)

where use has been made of (4.11) in the last inequality. The inequality (4.16) gives
rise to

∞∑
k=0

‖grad f(xk)‖4
xk

‖ηk‖2
xk

≥
∞∑

k=0

γ2

c

1
k + 1

= ∞. (4.17)

This contradicts (4.13) and the proof is completed. ¤

5. Numerical experiments

In this section, we compare Algorithm 3.2 with Algorithm 3.1 by numerical experi-
ments. As is shown in [9], if the vector transport T R as the differentiated retraction
satisfies the inequality (3.4), the convergence property of Algorithm 3.1 is proved.
However, if (3.4) does not hold, it is not always ensured that sequences generated
by Algorithm 3.1 converge. In contrast with this, Algorithm 3.2 indeed works well
even if (3.4) fails to hold, as is verified in Thm. 4.3. In the following, we give two
examples which show that Algorithm 3.2 works better than Algorithm 3.1. One
of the examples is somewhat artificial but well illustrates the situation in which a
sequence generated by Algorithm 3.1 is unlikely to converge. The other is a more
natural example encountered in a practical problem.

In both of two examples, we consider the following Rayleigh quotient minimiza-
tion problem on the sphere Sn−1 :=

{
x ∈ Rn |xT x = 1

}
[1, 6]:
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Problem 5.1

minimize f(x) = xT Ax, (5.1)

subject to x ∈ Sn−1, (5.2)

where A := diag(λ1, λ2, . . . , λn) with λ1 < λ2 < · · · < λn. The optimal solutions of
this problem are ±(1, 0, 0, . . . , 0)T , which are the unit eigenvectors of A associated
with the smallest eigenvalue λ1.

5.1. A sphere endowed with a peculiar metric

Consider Problem 5.1 with n = 20 and A = diag(1, 2, . . . , 20). A Riemannian
metric g(·, ·) on Sn−1 is here defined by

gx(ξx, ηx) := ξT
x Gxηx, ξx, ηx ∈ TxSn−1, (5.3)

where Gx := diag(10000(x(1))2 + 1, 1, 1, . . . , 1), and where x(1) denotes the first
component of the column vector x. It is to be noted that this metric is not the
standard one on Sn−1. The norm ‖ξx‖x of ξx ∈ TxSn−1 is then defined to be
‖ξx‖x =

√
gx(ξx, ξx). If x is close to the optimal solutions ±(1, 0, 0, . . . , 0), then

(x(1))2 is nearly 1. Since the first diagonal element of Gx is large because of the
coefficient 10000, the closer x is to ±(1, 0, 0, . . . , 0), the larger the norm ‖ξx‖x tends
to be.

With respect to the metric (5.3), the gradient of f is described as

grad f(x) = 2
(

I − G−1
x xxT

xT G−1
x x

)
G−1

x Ax. (5.4)

Indeed, the right-hand side of (5.4) belongs to TxSn−1 =
{
ξ ∈ Rn |xT ξ = 0

}
and

it holds that

gx

(
2

(
I − G−1

x xxT

xT G−1
x x

)
G−1

x Ax, ξ

)
= 2xT Aξ = Df(x)[ξ] (5.5)

for any ξ ∈ TxSn−1. Let R be the retraction on Sn−1 defined by

Rx(ξ) =
x + ξ√

(x + ξ)T (x + ξ)
, ξ ∈ TxSn−1, x ∈ Sn−1, (5.6)

which is the special case of the QR retraction (A5) on the Stiefel manifold defined
in Appendix A. For this R, the differentiated retraction T R defined by (2.8) is
written out as

T R
η (ξ) =

1√
(x + η)T (x + η)

(
I − (x + η)(x + η)T

(x + η)T (x + η)

)
ξ, η, ξ ∈ TxSn−1, x ∈ Sn−1.

(5.7)
We note that though the metric endowed with is not the standard one, the

Lipschitzian condition (4.2) holds, as is mentioned in Rem. A.2 in Appendix A.
Hence from Thm. 4.3, Algorithm 3.2 works well in theory.

Figs. 5.1, 5.2, and 5.3 show numerical results from applying Algorithm 3.1 to
Problem 5.1 with the initial point x0 = (1, 1, . . . , 1)T /2

√
5 ∈ Sn−1 with n = 20.
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Figure 5.1. The sequence of the values f(xk) of the objective function f evaluated on the sequence {xk}
generated by Algorithm 3.1.
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Figure 5.2. The sequence of the first components x
(1)
k from the sequence {xk} generated by Algorithm

3.1.

The vertical axes of Figs. 5.1, 5.2, and 5.3 carry values of f(xk) at xk, values of
the first components x

(1)
k of xk, and values of the ratios ‖T R

αkηk
(ηk)‖xk+1/‖ηk‖xk

,
respectively. Note that for the optimal solution x∗ = (1, 0, 0, . . . , 0)T ∈ Sn−1 which
the current generated sequence {xk} is expected to approach, the target value is
f(x∗) = x

(1)
∗ = 1 in both Figs. 5.1 and 5.2. Though the {xk} seems to come close

to x∗ bit by bit, the convergence is not observed even after 105 iterations. At the
iteration number 105, f(xk) is far from f(x∗) = 1, as is seen from Fig. 5.1. Fig. 5.2
shows that the sequence is intermittently repelled from the target point, when
approaching it. If more iterations, say 107, are performed, the graph of {x(1)

k } has
almost the same shape, that is, sharp peaks repeatedly appear in Fig. 5.2 with
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Figure 5.3. Ratios ‖T R
αkηk

(ηk)‖xk+1/‖ηk‖xk evaluated on the sequences {xk} and {ηk} generated by
Algorithm 3.1.

extended iterations. If ‖T R
αkηk

(ηk)‖xk+1/‖ηk‖xk
≤ 1 for all k ∈ N, the sequence {xk}

would converge. However, as is shown in Fig. 5.3, the ratio ‖T R
αkηk

(ηk)‖xk+1/‖ηk‖xk

intermittently exceeds the value 1. This fact seems to prevent the sequence from
converging, as long as numerical experiments suggest. To gain insight into the
non-convergence problem, we put Figs. 5.2 and 5.3 together into Fig. 5.4, which
shows that the peaks of two graphs synchronize. This suggests that the violation

0 0.5 1 1.5 2

x 10
4

0.5

1

1.5

Iteration

 

 

x
k
(1) (Fig. 5.1)

Ratios (Fig. 5.3)

Figure 5.4. x
(1)
k and ‖T R

αkηk
(ηk)‖xk+1/‖ηk‖xk by Algorithm 3.1.

of the inequality (3.4) makes the sequence fail to approach the optimal solution
x∗. This phenomenon is caused by the large first diagonal element of Gx in the
neighbourhood of x∗.

In contrast with this, in Algorithm 3.2, the vector transport T R is scaled if neces-
sary, and thereby generated sequences converge to solve Problem 5.1. In comparison
with Fig. 5.2, Fig. 5.5 shows that the present algorithm generates a converging se-
quence, resolving the difficulty of being repelled from the optimal solution. We
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Figure 5.5. The sequence of the first components x
(1)
k from the sequence {xk} generated by Algorithm

3.2.

here note that the inequality ‖T (k)
αkηk(ηk)‖xk+1 ≤ ‖ηk‖xk

is never violated in this
algorithm.

We now investigate the performance of Algorithm 3.2 in more detail with inter-
est in comparison with a restart strategy in the conjugate gradient method. As is
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Alg. 3.2
without Restart

Alg. 3.2 with
Restart (N=19)

Alg. 3.2 with
Restart (N=50)

Alg. 3.2 with
Restart (N=100)

Figure 5.6. The sequences of the distances between xk and x∗ with respect to the sequences {xk} generated
by Algorithm 3.2 with several restarting strategies.

well known, in a nonlinear conjugate gradient method on the Euclidean space, the
iteration is often restarted at every N steps by taking a steepest descent search
direction, where N is usually chosen to be the dimension of the search space in the
problem. To gain a sight of the performance of the restart method on a Rieman-
nian manifold, we introduce a similar restart strategy into Algorithms 3.1 and 3.2,
that is, we set βk+1 = 0 in Step 5 of each algorithm at every N steps. A choice
for N is 19, which is the dimension of Sn−1 with n = 20. For comparison, the
both algorithms with restarts are also performed for N = 50 and N = 100. The



August 7, 2013 Optimization GOPT-2013-0044.R2

16 H. Sato and T. Iwai

results from Algorithm 3.2 with and without restart are shown in Fig. 5.6. The
vertical axis of Fig. 5.6 carries

√
(xk − x∗)T (xk − x∗), which is an approximation

of the distance between xk and x∗ on Sn−1. We can observe from the graphs in
Fig. 5.6 that Algorithm 3.2 with and without restart has a superlinear convergence
property. Fig. 5.6 shows further that Algorithm 3.2 without restart exhibits better
performance than Algorithm 3.2 with a few variants of restarts, which means that
the restart strategy fails to improve the performance of Algorithm 3.2.
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Alg. 3.1 with
Restart (N=19)

Alg. 3.1 with
Restart (N=50)

Alg. 3.1 with
Restart (N=100)

Figure 5.7. The sequences of the distances between xk and x∗ with respect to the sequences {xk} generated
by Algorithm 3.2 and Algorithm 3.1 with several restarting strategies.

On the contrary, the restart strategy improves the performance of Algorithm 3.1,
but the resultant performance is not comparable to Algorithm 3.2 without restart
yet. A numerical evidence is shown in Fig. 5.7.

5.2. The sphere endowed with the orthographic retraction

We give a more natural example, in which the inequality (3.4) is never satisfied.
Consider Problem 5.1 with n = 100 and A = diag(1, 2, . . . , 100)/100. The difference
from the example in Subsection 5.1 is the choice of a Riemannian metric and a
retraction. We in turn endow the sphere Sn−1 with the induced metric 〈·, ·〉 from
the natural inner product on Rn:

〈ξx, ηx〉x := ξT
x ηx, ξx, ηx ∈ TxSn−1. (5.8)

The norm of ξx ∈ TxSn−1 is then defined to be ‖ξx‖x =
√

ξT
x ξx as usual. With the

natural metric 〈·, ·〉, the gradient of f is written out as

grad f(x) = 2(I − xxT )Ax. (5.9)

We consider the orthographic retraction R on Sn−1 [2], which is defined to be

Rx(ξ) =
√

1 − ξT ξ x + ξ, ξ ∈ TxSn−1 with ‖ξ‖x < 1. (5.10)
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Associated with this R, the vector transport T R is written out as

T R
η (ξ) = ξ − ηT ξ√

1 − ηT η
x, η, ξ ∈ TxSn−1 with ‖η‖x, ‖ξ‖x < 1, x ∈ Sn−1.

(5.11)
For this T R, the norm ‖T R

η (ξ)‖Rx(η) is evaluated as

‖T R
η (ξ)‖2

Rx(η) = ‖ξ‖2
x +

(ηT ξ)2

1 − ‖η‖2
x

≥ ‖ξ‖2
x, (5.12)

where use has been made of xT x = 1 and xT ξ = 0. Thus, the inequality (3.4), which
is the key condition for the proof of the global convergence property of Algorithm
3.1, is violated unless ηk = 0. In spite of this fact, we may try to perform Algorithm
3.1 for this problem. If the generated sequence does not diverge, we can compare
the result with that obtained by Algorithm 3.2. We performed Algorithms 3.1 and
3.2 and obtained Fig. 5.8, whose vertical axis carries

√
(xk − x∗)T (xk − x∗). The

figure shows the superiority of the proposed algorithm.
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Figure 5.8. The sequences of distances between xk and x∗ for the sequences {xk} generated by Algorithms
3.1 and 3.2 with the orthographic retraction.

6. Concluding Remarks

We have dealt with the global convergence of the conjugate gradient method with
the Fletcher-Reeves β. Though the conjugate gradient method generates globally
converging sequences in the Euclidean space, the conjugate gradient method on a
Riemannian manifold M has not been shown to have a convergence property in
general, but under the assumption that the vector transport T R as the differenti-
ated retraction does not increase the norm of the tangent vector, the convergence
is proved in [9]. If the parallel translation is adopted as a vector transport, the
conjugate gradient method is shown to generate converging sequences, as is given
in [11]. However, the parallel translation is not convenient for computational effec-
tiveness. For computational efficiency, we have introduced a vector transport, in
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place of the parallel translation, with a modification that the vector transport T R

is replaced by the scaled vector transport T 0 only when T R increases the norm of
the search direction vector. The idea is simple but effective. We have achieved a
balance between computational efficiency and the global convergence by proposing
Algorithm 3.2. We have shown the convergence of the present algorithm both in the
theoretical and the numerical viewpoints. In particular, we have performed numer-
ical experiments to show that the present algorithm can solve problems for which
the existing algorithm cannot work well because of the violation of the assumption
about the vector transport.

Appendix A. Examples in which the condition (4.2) holds

In Thm. 4.1, we assume that the condition (4.2) holds. We here compare (4.2) with
the condition that f ◦ Rx is Lipschitz continuously differentiable uniformly for x,
that is, there exists a Lipschitz constant L > 0 such that

‖D(f ◦ Rx)(ξ) − D(f ◦ Rx)(ζ)‖ ≤ L‖ξ − ζ‖x, ξ, ζ ∈ TxM,x ∈ M, (A1)

where the ‖·‖ of the left-hand side means the operator norm (see [9] for detail).
The condition (A1) is equivalent to

sup
‖η‖x=1

|(D(f ◦Rx)(ξ)−D(f ◦Rx)(ζ))[η]| ≤ L‖ξ−ζ‖x, ξ, ζ ∈ TxM,x ∈ M. (A2)

In particular, setting ζ = 0 and ξ = tη in (A2) yields (4.2). In this sense, the
condition (4.2) is a weaker form of (A1). The assumption (4.2) is of practical use.
For example, the problem of minimizing the Brockett cost function on the Stiefel
manifold St(p, n) with the natural induced metric [1] has this property, as is shown
below.

Let n, p be positive integers with n ≥ p. The Stiefel manifold St(p, n) is defined
to be St(p, n) :=

{
X ∈ Rn×p |XT X = Ip

}
. We consider St(p, n) as a Riemannian

submanifold of Rn×p endowed with the natural induced metric

〈ξ, η〉X := tr(ξT η), ξ, η ∈ TXSt(p, n). (A3)

Let A be an n× n symmetric matrix and N := diag(µ1, µ2, . . . , µp) with 0 < µ1 <
µ2 < · · · < µp. The Brockett cost function f is defined on St(p, n) to be

f(X) = tr
(
XT AXN

)
. (A4)

Further, the QR decomposition-based retraction (which we call the QR retraction)
R is defined to be

RX(ξ) := qf(X + ξ), ξ ∈ TXSt(p, n), X ∈ St(p, n), (A5)

where qf(B) denotes the Q-factor of the QR decomposition of a full rank matrix
B ∈ Rn×p. That is, if B is decomposed into B = QR, where Q ∈ St(p, n) and R is
an upper triangular p× p matrix with positive diagonal elements, then qf(B) = Q.

Proposition A.1 The inequality (4.2) holds for the Brockett cost function (A4) on
M = St(p, n), where St(p, n) is endowed with the natural induced metric (A3), and
where the QR retraction (A5) is adopted.
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Proof : Since the function (A4) is smooth, we have only to show that∣∣∣∣ d2

dt2
(f ◦ RX) (tη)

∣∣∣∣ ≤ L, η ∈ TXSt(p, n) with ‖η‖X = 1, X ∈ St(p, n), t ≥ 0.

(A6)
In fact, Eq. (4.2) is a straightforward consequence of this inequality. Let Q(t) be
a curve defined by RX(tη) = qf(X + tη), and xk, ηk, qk(t) denote the k-th column
vectors of X, η,Q(t), respectively. Then, through the Gram-Schmidt orthonormal-
ization process, we obtain

qk(t) =
xk + tηk −

∑k−1
i=1 (qi(t), xk + tηk)qi(t)

‖xk + tηk −
∑k−1

i=1 (qi(t), xk + tηk)qi(t)‖
, (A7)

where (a, b) := aT b and ‖a‖ :=
√

(a, a) for n-dimensional vectors a, b. By induction
on k, we can take vector-valued polynomials gk(t) in t satisfying

qk(t) =
gk(t)
‖gk(t)‖

, t ≥ 0. (A8)

Indeed, for k = 1, (A8) holds with g1(t) = x1 + tη1. Suppose that (A8) holds for
1, . . . , k − 1. Then we can write out qk(t) as

qk(t) =

∏k−1
j=1‖gj(t)‖2(xk + tηk) −

∑k−1
i=1

∏
j 6=i‖gj(t)‖2(gi(t), xk + tηk)gi(t)

‖
∏k−1

j=1‖gj(t)‖2(xk + tηk) −
∑k−1

i=1

∏
j 6=i‖gj(t)‖2(gi(t), xk + tηk)gi(t)‖

.

(A9)
Denoting by gk(t) the numerator of the right-hand side of (A9), which is a poly-
nomial in t, we obtain (A8).

Let

h(X, η, t) =
d2

dt2
(f ◦ RX)(tη). (A10)

Then, the h(X, η, t) is written out as

h(X, η, t) =
p∑

k=1

µk
d2

dt2
(
qk(t)T Aqk(t)

)
. (A11)

Since qk(t)T Aqk(t) = gk(t)T Agk(t)/‖gk(t)‖2, and since the degree of the numerator
polynomial in t is not more than that of the denominator polynomial, the degree
of the numerator polynomial from the right-hand side of (A11) is less than that of
the denominator polynomial, so that one has, as t → ∞,

lim
t→∞

h(X, η, t) = 0. (A12)

This implies that h(X, η, t) is bounded with respect to t ≥ 0. Moreover,
the h(X, η, t) is continuous with respect to X and η on the compact set
{(X, η) ∈ T St(p, n) | ‖η‖X = 1}. It then turns out that h(X, η, t) is bounded on
the whole domain, which implies that there exists L > 0 such that (A6) holds.
This completes the proof. ¤

Remark A.1 Reviewing the proof, we observe that since the QR retraction is ir-
respective of the metric with which the St(p, n) is endowed, and since the set
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{(X, η) ∈ T St(p, n) | ‖η‖X = 1} is compact with respect to any metric on St(p, n),
the inequality (4.2) with R being the QR retraction (A5) holds for the Brockett cost
function (A4) independently of the choice of a metric.

Remark A.2 We also note that Prop. A.1 and Rem. A.1 cover both the Rayleigh
quotient on the sphere Sn−1 as p = 1 and the Brockett cost function on the orthog-
onal group as p = n. In particular, the inequality (4.2) holds for the function (5.1),
though the sphere Sn−1 is endowed with the non-standard metric (5.3).

Another example for (4.2) comes from the problem of minimizing the function

F (U, V ) = tr(UT AV N) (A13)

on St(p,m)× St(p, n), where A is an m× n matrix and N = diag(µ1, . . . , µp) with
µ1 > · · · > µp > 0. An optimal solution to this problem gives the singular value
decomposition of A [10]. Let m,n, p be positive integers with m ≥ n ≥ p. We
consider St(p,m)×St(p, n) as a Riemannian submanifold of Rm×p×Rn×p endowed
with the natural induced metric;

〈(ξ1, η1), (ξ2, η2)〉(U,V ) := tr(ξT
1 ξ2) + tr(ηT

1 η2),

(ξ1, η1), (ξ2, η2) ∈ T(U,V )(St(p,m) × St(p, n)) . (A14)

As in the previous example on St(p, n), the QR retraction on St(p,m)× St(p, n) is
defined by

R(U,V )(ξ, η) := (qf(U + ξ), qf(V + η)) , (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n))
(A15)

for (U, V ) ∈ St(p,m) × St(p, n).

Proposition A.2 The inequality (4.2) holds for the objective function (A13) on
M = St(p,m) × St(p, n), where M is endowed with the natural induced metric
(A14) and with the QR retraction (A15).

Proof : We shall show that∣∣∣∣ d2

dt2
(
F ◦ R(U,V )

)
(t(ξ, η))

∣∣∣∣ ≤ L (A16)

for (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) with ‖(ξ, η)‖(U,V ) = 1, (U, V ) ∈ St(p,m) ×
St(p, n), t ≥ 0. Put Q(t) = qf(U + tξ), S(t) = qf(V + tη). Let qk(t) and sk(t)
denote the k-th column vectors of Q(t) and S(t), respectively. From Prop. A.1 and
its course of the proof, there exist vector-valued polynomials gk(t) and hk(t) such
that

qk(t) =
gk(t)

‖gk(t)‖
, sk(t) =

hk(t)
‖hk(t)‖

. (A17)

Let

H(U, V, ξ, η, t) =
d2

dt2
(
F ◦ R(U,V )

)
(t(ξ, η)) . (A18)
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Then we have

H(U, V, ξ, η, t) =
p∑

k=1

µk
d2

dt2
(
qk(t)T Ask(t)

)
. (A19)

Since qk(t)T Ask(t) = gk(t)T Ahk(t)/(‖gk(t)‖‖hk(t)‖), by the same reasoning as that
for h(X, ξ, t) in Prop. A.1, we have

lim
t→∞

H(U, V, ξ, η, t) = 0, (A20)

so that H(U, V, ξ, η, t) is bounded with respect to t ≥ 0. Further, H(U, V, ξ, η, t) is
continuous with respect to (U, V, ξ, η) on the compact set{
(U, V, ξ, η) ∈ T (St(p,m) × St(p, n)) | ‖(ξ, η)‖(U,V ) = 1

}
. Hence H(U, V, ξ, η, t) is

bounded on the whole domain. This completes the proof. ¤

A remark similar to Rem. A.1 can be made on the metric to be endowed with on
St(p,m) × St(p, n). The validity of (4.2) is independent of the choice of a metric.

Returning to the case of a general Riemannian manifold M , we make a further
comment on (4.2). We are interested in the range of t ≥ 0. Assume that M is
compact and f is smooth. A smooth function on a compact set is Lipschitz con-
tinuously differentiable. However, the set {(x, η, t) ∈ TM × R | ‖η‖x = 1, t ≥ 0}
is not compact even though M is compact. Therefore, it is not so clear that the
inequality (4.2) holds in general. We here note that the inequality (4.2) is used in
the form

D(f ◦ Rxk
)(αkηk)[ηk] − D(f ◦ Rxk

)(0)[ηk] ≤ αkL‖ηk‖2
xk

(A21)

for the proof of Thm. 4.1. A question then arises as to under what condition the
inequality (A21) holds. If it is ensured that there exists a constant m > 0 such
that αk‖ηk‖xk

≤ m for all k, then we can prove (A21). Indeed, in order to prove
(A21) in such a case, the range of t in (4.2) can be restricted to 0 ≤ t ≤ m, and
the inequality we need to prove as a counterpart to (4.2) is written as

|D(f◦Rx)(tη)[η]−D(f◦Rx)(0)[η]| ≤ Lt, η ∈ TxM with ‖η‖x = 1, x ∈ M, 0 ≤ t ≤ m.
(A22)

In order that (A22) hold, it is sufficient that there exists a constant L > 0 satisfying∣∣∣∣ d2

dt2
(f ◦ Rx) (tη)

∣∣∣∣ ≤ L, η ∈ TxM with ‖η‖x = 1, x ∈ M, 0 ≤ t ≤ m. (A23)

Since the left-hand side of the inequality (A23) is continuous with respect to t
on a compact set {t ∈ R | 0 ≤ t ≤ m}, there exists Lx,η for each (x, η) ∈ M such
that (A23) with L = Lx,η holds, where M = {(x, η) ∈ TM | ‖η‖x = 1}. The
compactness of the set M ensures the existence of L := sup(x,η)∈M Lx,η and the L
thus defined satisfies (A23).
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