21 research outputs found

    Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions

    Get PDF
    Estimated regions of linkage disequilibrium and associations between SNPs and expression level in regions flanking CPRs for which sequence variation could explain gene expression variation and was subject to purifying selection or selective sweep. Flanking regions (±5000 bp) of CPRs for CG15743 (A), CG9044 (B), brat (C), Cyp4d1 (D), CG14253 (E), Nmda1 (F), CG6950 (G), CG10463 (H), and CG33506 (I) are shown. Gray shades indicate haplotype blocks within which linkage disequilibrium could be found. Orange bars indicate coding region. Green bar indicates CPR. Each dot indicates a false discovery rate value (FDR) using the Wald test for the association between expression levels and SNPs. Horizontal line indicates FDR threshold (α = 0.01). (PDF 626 kb

    Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon

    Get PDF
    タイヌビエのゲノムを高精度解読 --除草剤に抵抗性を持つ水田の雑草タイヌビエの高精度ゲノム解読に成功--. 京都大学プレスリリース. 2023-11-07.Echinochloa phyllopogon is an allotetraploid pernicious weed species found in rice fields worldwide that often exhibit resistance to multiple herbicides. An accurate genome sequence is essential to comprehensively understand the genetic basis underlying the traits of this species. Here, the telomere-to-telomere genome sequence of E. phyllopogon was presented. Eighteen chromosome sequences spanning 1.0 Gb were constructed using the PacBio highly fidelity long technology. Of the 18 chromosomes, 12 sequences were entirely assembled into telomere-to-telomere and gap-free contigs, whereas the remaining six sequences were constructed at the chromosomal level with only eight gaps. The sequences were assigned to the A and B genome with total lengths of 453 and 520 Mb, respectively. Repetitive sequences occupied 42.93% of the A genome and 48.47% of the B genome, although 32, 337, and 30, 889 high-confidence genes were predicted in the A and B genomes, respectively. This suggested that genome extensions and gene disruptions caused by repeated sequence accumulation often occur in the B genome before polyploidization to establish a tetraploid genome. The highly accurate and comprehensive genome sequence could be a milestone in understanding the molecular mechanisms of the pernicious traits and in developing effective weed control strategies to avoid yield loss in rice production

    Introduction pathways and evolutionary mechanisms of alien species of Lolium spreading across sandy coasts in Japan

    Get PDF
    1. Estimating the role of specific processes in the spread of alien species necessitates the determination of introduction pathways and source populations of invaded areas. Alien grasses in the genus Lolium that have extensively invaded Japan provide a unique opportunity to estimate the expansion process through direct comparison between source and naturalised populations because the introduction pathways, contaminants in grain commodities and commercial cultivars for fodder crops or revegetation materials are well-known. Therefore, by directly comparing source and naturalised populations, we estimated the introduction pathways and whether adaptative evolution occurred in Lolium species on sandy coasts in Japan. 2. Lolium individuals sampled from naturalised populations in croplands, seaports, and sandy coasts were compared with those from two introduction sources for morphological and genetic variations based on a genome-wide single nucleotide polymorphism analysis and a common garden experiment. Furthermore, we conducted a reciprocal transplant experiment between cropland and sandy coast. 3. Populations naturalised in croplands were closely related to the cultivars, whereas those naturalised in seaports and sandy coasts were associated with contaminants. These results indicate that the cropland and sandy coast populations are derived from cultivars and contaminants, respectively. In addition, asymmetric gene flow from cropland populations to sandy coast populations was observed. The reciprocal transplant experiment clearly demonstrated the home site advantage; populations derived from croplands yielded higher floret numbers than those derived from other habitats at the cropland site; sandy coast populations had higher survival rates than those from croplands at the coastal site. Port populations exhibited a similar tendency as sandy coast populations, indicating that contaminants may be originally adapted to salty and dry environments, such as that in sandy coasts. The flowering phenology in the sandy coast populations evolved in the late flowering; therefore, late flowering alleles may have been transferred from cropland populations to sandy coast populations. 4. Synthesis. We demonstrated that two congeneric species with different ecological characteristics were introduced through multiple introduction pathways and spread across different habitats. A direct comparison between source and naturalised populations can considerably elucidate the patterns and processes of biological invasions

    Genetic consequences of habitat fragmentation in a perennial plant Trillium camschatcense are subjected to its slow-paced life history

    Get PDF
    Many wild populations are suffering from the loss of genetic diversity caused by habitat fragmentation, while the degree of diversity loss differs among species and populations based on their life history characteristics. Trillium camschatcense, an understory perennial plant, has undergone intensive habitat fragmentation in the Tokachi region, Hokkaido, Japan. Although demographic deteriorations, such as reduced seed production, were already reported, genetic consequences of fragmentation have not been studied with reference to its life history. Here, we examined how life history events (e.g., growth and reproduction) and the stochasticity therein influence genetic diversity in two (each large and small) fragmented T. camschatcense populations. Genetic diversity was evaluated using genome-wide 2,008 single nucleotide polymorphisms (SNPs). In the small population, genetic diversity of newly germinated seedlings was significantly lower than that of matured life history stages, and effective number of breeders (N-b) was smaller than that of the large population. Simulations using a matrix population model showed that the diversity loss at seedlings is caused by genetic drift during reproduction, which was intensified by smaller N-b. Besides, simulations using randomly perturbed transition matrices suggested that stasis at juvenile stages, which is a common characteristics of T. camschatcense, maintains genetic diversity by buffering stochastic decrease, possibly contributing to population viability. While previous studies showed the importance to facilitate reproduction and recruitment for demographic recovery, this study highlighted the crucial roles of juvenile survival in terms of genetic diversity for the conservation of fragmented T. camschatcense populations in the Tokachi region

    Rapid seasonal changes in phenotypes in a wild Drosophila population

    No full text
    Abstract Seasonal environmental change is one of the most rapid and striking environmental variables. Although relatively rapid adaptation to environmental changes over several years or several decades has been described in many taxa, rapid responses to seasonal environments are delicate, and therefore, the detection of the evolutionary responses requires sensitive methods. In this study, we examined seasonal changes in phenotypes related to thermal tolerance and morphological traits of Drosophila lutescens collected at the spring and autumn periods from a single location. We first demonstrated that flies in the two seasonal periods were almost genetically identical using double-digest restriction site-associated DNA sequencing and analysis. Using an experimental design to eliminate the effect of possible confounding factors that influence phenotypes (i.e., maternal effects and the environmental conditions in which each phenotype was analyzed), we showed that the heat tolerance of D. lutescens was significantly higher in the autumn population than in the spring population. Furthermore, cold tolerance was slightly higher in the spring population than in the autumn one. Although wing length and thorax length did not change significantly between seasons, the ratio of wing length to thorax length changed significantly between them. These results suggest that seasonal environmental heterogeneity induces rapid phenotypic changes within a year. Finally, we discuss the possibility of rapid evolutionary responses to seasonal changes

    Genomic Characterization of β-Glucuronidase–Positive Escherichia coli O157:H7 Producing Stx2a

    No full text
    Among Shiga toxin (Stx)–producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a β-glucuronidase–positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (β-glucuronidase–negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones

    Introduction pathways and evolutionary mechanisms of alien species of Lolium spreading across sandy coasts in Japan

    No full text
    1. Estimating the role of specific processes in the spread of alien species necessitates the determination of introduction pathways and source populations of invaded areas. Alien grasses in the genus Lolium that have extensively invaded Japan provide a unique opportunity to estimate the expansion process through direct comparison between source and naturalised populations because the introduction pathways, contaminants in grain commodities and commercial cultivars for fodder crops or revegetation materials are well-known. Therefore, by directly comparing source and naturalised populations, we estimated the introduction pathways and whether adaptative evolution occurred in Lolium species on sandy coasts in Japan. 2. Lolium individuals sampled from naturalised populations in croplands, seaports, and sandy coasts were compared with those from two introduction sources for morphological and genetic variations based on a genome-wide single nucleotide polymorphism analysis and a common garden experiment. Furthermore, we conducted a reciprocal transplant experiment between cropland and sandy coast. 3. Populations naturalised in croplands were closely related to the cultivars, whereas those naturalised in seaports and sandy coasts were associated with contaminants. These results indicate that the cropland and sandy coast populations are derived from cultivars and contaminants, respectively. In addition, asymmetric gene flow from cropland populations to sandy coast populations was observed. The reciprocal transplant experiment clearly demonstrated the home site advantage; populations derived from croplands yielded higher floret numbers than those derived from other habitats at the cropland site; sandy coast populations had higher survival rates than those from croplands at the coastal site. Port populations exhibited a similar tendency as sandy coast populations, indicating that contaminants may be originally adapted to salty and dry environments, such as that in sandy coasts. The flowering phenology in the sandy coast populations evolved in the late flowering; therefore, late flowering alleles may have been transferred from cropland populations to sandy coast populations. 4. Synthesis. We demonstrated that two congeneric species with different ecological characteristics were introduced through multiple introduction pathways and spread across different habitats. A direct comparison between source and naturalised populations can considerably elucidate the patterns and processes of biological invasions

    Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan

    No full text
    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as “spotted fevers”. The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles.Citation: Akter A, Ooka T, Gotoh Y, Yamamoto S, Fujita H, Terasoma F, Kida K, Taira M, Nakadouzono F, Gokuden M, Hirano M, Miyashiro M, Inari K, Shimazu Y, Tabara K, Toyoda A, Yoshimura D, Itoh T, Kitano T, Sato MP, Katsura K, Mondal SI, Ogura Y, Ando S, Hayashi T. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan. Genome Biol Evol. 2017 Jan 1;9(1):124-133. doi: 10.1093/gbe/evw304. PMID: 28057731; PMCID: PMC5381555
    corecore