8 research outputs found

    Ruddy Shelduck Tadorna ferruginea home range and habitat use during the non-breeding season in Assam, India

    Get PDF
    India is an important non-breeding ground for migratory waterfowl in the Central Asian Flyway. Millions of birds visit wedands across the country, yet information on their distribution, abundance, and use of resources is rudimentary at best. Limited information suggests that populations of several species of migratory ducks are declining due to encroachment of wedand habitats largely by agriculture and industry. The development of conservation strategies is stymied by a lack of ecological information on these species. We conducted a preliminary assessment of the home range and habitat use of Ruddy Shelduck Tadornaferruginea in the northeast Indian state of Assam. Seven Ruddy Shelducks were fitted with solar-powered Global Positioning System (GPS) satellite transmitters, and were tracked on a daily basis during the winter of 2009-2010. Locations from all seven were used to describe habitat use, while locations from four were used to quantify their home range, as the other three had too few locations (<30) for home range estimation. A Brownian Bridge Movement Model (BBMM), used to estimate home ranges, found that the Ruddy Shelduck had an average core use area (i.e. the contour defining 50% of positions) of 40 km 2 (range = 22-87 km2) and an average home range (95% contour) of 610 km2 (range = 222-1,550 km2). Resource Selection Functions (RSF), used to describe habitat use, showed that the birds frequented riverine wetlands more than expected, occurred on grasslands and shrublands in proportion to their availability, and avoided woods and cropland habitats. The core use areas for three individuals (75%) were on the Brahmaputra River, indicating their preference for riverine habitats. Management and protection of riverine habitats and nearby grasslands may benefit conservation efforts for the Ruddy Shelduck and waterfowl species that share these habitats during the non-breeding seaso

    Unusual Occurrence of Fulvous Whistling duck Dendrocygna Bicolor (Vieillot 1816) At Chilika Lake

    No full text
    Volume: 104Start Page: 351End Page: 35

    Further Records of Great Knot Calidris Tenuirostris and Red Knot Calidris Canutus from the North east Coast of India

    No full text
    Volume: 104Start Page: 350End Page: 35

    A Large Congregation of Cotton Teal Nettapus Coromandelianus Observed At Chilika Lake, Orissa, India

    No full text
    Volume: 105Start Page: 96End Page: 9

    The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    No full text
    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.publishe

    The trans-Himalayan flights of bar-headed geese (Anser indicus)

    No full text
    Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000 m in 7–8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8–2.2 km·h−1, even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power
    corecore