186 research outputs found

    Do Basic Psychomotor Skills Transfer Between Different Image-based Procedures?

    Get PDF
    Background - Surgical techniques that draw from multiple types of image-based procedures (IBP) are increasing, such as Natural Orifice Transluminal Endoscopic Surgery, fusing laparoscopy and flexible endoscopy. However, little is known about the relation between psychomotor skills for performing different types of IBP. For example, do basic psychomotor colonoscopy and laparoscopy skills interact? Methods - Following a cross-over study design, 29 naïve endoscopists were trained on the Simbionix GI Mentor and the SimSurgery SEP simulators. Group C (n = 15) commenced with a laparoscopy session, followed by four colonoscopy sessions and a second laparoscopy session. Group L (n = 14) started with a colonoscopy session, followed by four laparoscopy sessions and a second colonoscopy session. Results - No significant differences were found between the performances of group L and group C in their first training sessions on either technique. With additional colonoscopy training, group C outperformed group L in the second laparoscopy training session on the camera navigation task. Conclusions - Overall, training in the basic colonoscopy tasks does not affect performance of basic laparoscopy tasks (and vice versa). However, to limited extent, training of basic psychomotor skills for colonoscopy do appear to contribute to the performance of angled laparoscope navigation tasks. Thus, training and assessment of IBP typespecific skills should focus on each type of tasks independently. Future research should further investigate the influence of psychometric abilities on the performance of IBP and the transfer of skills for physicians who are experienced in one IBP type and would like to become proficient in another type of IBP.Industrial DesignIndustrial Design Engineerin

    Surgical Simulator Design and Development

    Get PDF
    With the introduction of minimally invasive surgery (MIS), it became necessary to develop training methods to learn skills outside the operating room. Several training simulators have become commercially available, but fundamental research into the requirements for effective and efficient training in MIS is still lacking. Three aspects of developing a training program are investigated here: what should be trained, how it should be trained, and how to assess the results of training. In addition, studies are presented that have investigated the role of force feedback in surgical simulators. Training should be adapted to the level of behavior: skill-based, rule-based, or knowledge-based. These levels can be used to design and structure a training program. Extra motivation for training can be created by assessment. During MIS, force feedback is reduced owing to friction in the laparoscopic instruments and within the trocar. The friction characteristics vary largely among instruments and trocars. When force feedback is incorporated into training, it should include the large variation in force feedback properties as well. Training different levels of behavior requires different training methods. Although force feedback is reduced during MIS, it is needed for tissue manipulation, and therefore force application should be trained as well

    Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal?

    Get PDF
    Aims- Minimally invasive surgery (MIS) requires a high degree of eye–hand coordination from the surgeon. To facilitate the learning process, objective assessment systems based on analysis of the instruments’ motion are being developed. To investigate the influence of performance on motion characteristics, we examined goaloriented movements in a box trainer. In general, goal-oriented movements consist of a retracting and a seeking phase, and are, however, not performed via the shortest path length. Therefore, we hypothesized that the shortest path is not an optimal concept in MIS. Methods-Participants were divided into three groups (experts, residents, and novices). Each participant performed a number of one-hand positioning tasks in a box trainer. Movements of the instrument were recorded with the TrEndo tracking system. The movement from point A to B was divided into two phases: A-M (retracting) and M-B (seeking). Normalized path lengths (given in %) of the two phases were compared. Results- Thirty eight participants contributed. For the retracting phase, we found no significant difference between experts [median (range) %: 152 (129–178)], residents [164 (126–250)], and novices [168 (136–268)]. In the seeking phase, we find a significant difference (<0.001) between experts [180 (172–247)], residents [201 (163–287)], and novices [290 (244–469)]. Moreover, within each group, a significant difference between retracting and seeking phases was observed. Conclusions- Goal-oriented movements in MIS can be split into two phases: retracting and seeking. Novices are less effective than experts and residents in the seeking phase. Therefore, the seeking phase is characteristic of performance differences. Furthermore, the retracting phase is essential, because it improves safety by avoiding intermediate tissue contact. Therefore, the shortest path length, as presently used during the assessment of basic MIS skills, may be not a proper concept for analyzing optimal movements and, therefore, needs to be revised.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Laparoscopic Video Analysis for Training and Image Guided Surgery

    Get PDF
    Automatic analysis of Minimally Invasive Surgical video has the potential to drive new solutions for alleviating needs of safe and reproducible training programs, objective and transparent evaluation systems and navigation tools to assist surgeons and improve patient safety. Surgical video is an always available source of information, which can be used without any additional intrusive hardware in the operating room. This paper is focused on surgical video analysis methods and techniques. It describes authors' contributions in two key aspects, the 3D reconstruction of the surgical field and the segmentation and tracking of tools and organs based on laparoscopic video images. Results are given to illustrate the potential of this field of research, like the calculi of the 3D position and orientation of a tool from its 2D image, or the translation of a preoperative resection plan into a hepatectomy surgical procedure using the shading information of the image. Research efforts are required to further develop these technologies in order to harness all the valuable information available in any video-based surgery

    The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    Get PDF
    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. METHODS: A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. RESULTS: The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. CONCLUSIONS: In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisitio

    Proving the Effectiveness of the Fundamentals of Robotic Surgery (FRS) Skills Curriculum: A Single-blinded, Multispecialty, Multi-institutional Randomized Control Trial

    Get PDF
    Objective: To demonstrate the noninferiority of the fundamentals of robotic surgery (FRS) skills curriculum over current training paradigms and identify an ideal training platform. Summary Background Data: There is currently no validated, uniformly accepted curriculum for training in robotic surgery skills. Methods: Single-blinded parallel-group randomized trial at 12 international American College of Surgeons (ACS) Accredited Education Institutes (AEI). Thirty-three robotic surgery experts and 123 inexperienced surgical trainees were enrolled between April 2015 and November 2016. Benchmarks (proficiency levels) on the 7 FRS Dome tasks were established based on expert performance. Participants were then randomly assigned to 4 training groups: Dome (n = 29), dV-Trainer (n = 30), and DVSS (n = 32) that trained to benchmarks and control (n = 32) that trained using locally available robotic skills curricula. The primary outcome was participant performance after training based on task errors and duration on 5 basic robotic tasks (knot tying, continuous suturing, cutting, dissection, and vessel coagulation) using an avian tissue model (transfer-test). Secondary outcomes included cognitive test scores, GEARS ratings, and robot familiarity checklist scores. Results: All groups demonstrated significant performance improvement after skills training (P < 0.01). Participating residents and fellows performed tasks faster (DOME and DVSS groups) and with fewer errors than controls (DOME group; P < 0.01). Inter-rater reliability was high for the checklist scores (0.82–0.97) but moderate for GEARS ratings (0.40–0.67). Conclusions: We provide evidence of effectiveness for the FRS curriculum by demonstrating better performance of those trained following FRS compared with controls on a transfer test. We therefore argue for its implementation across training programs before surgeons apply these skills clinically
    corecore